Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN Imprimer: 1064-2315
ISSN En ligne: 2163-9337

Volumes:
Volume 51, 2019 Volume 50, 2018 Volume 49, 2017 Volume 48, 2016 Volume 47, 2015 Volume 46, 2014 Volume 45, 2013 Volume 44, 2012 Volume 43, 2011 Volume 42, 2010 Volume 41, 2009 Volume 40, 2008 Volume 39, 2007 Volume 38, 2006 Volume 37, 2005 Volume 36, 2004 Volume 35, 2003 Volume 34, 2002 Volume 33, 2001 Volume 32, 2000 Volume 31, 1999 Volume 30, 1998 Volume 29, 1997 Volume 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v41.i8.20
pages 13-23

Modeling and Analysis of Concentration Fields of Nonlinear Competitive Two-Component Diffusion in Medium of Nanoporous Particles

Mikhail R. Petryk
Ivan Puluj Ternopol National Technical University, Ternopol
Jack Fraissard
Pyer and Mari Kyuri University, Paris, France
Dmitriy M. Mykhalyk
Ternopol Ivan Pulyui State Technical University, Ukraine

RÉSUMÉ

We proposed nonlinear mathematical model of two-component competitive diffusion in bounded nanoporous media of spherical particles. Exact analytical solutions of this model were constructed with application of the Heaviside operational calculus and the Cauchy fundamental matrixes. We conduct numerical modeling and analysis of dynamics of variation of concentration in particle for interparticle space in zeoilite for the process of competitive two-phase diffusion.


Articles with similar content:

HEAT TRANSFER IN DISPERSED-PHASE FLOWS
International Heat Transfer Conference 6, Vol.1, 1978, issue
С. T. Crowe
On a Nonisothermal Consolidation Mathematical Model of Geoinformatics
Journal of Automation and Information Sciences, Vol.42, 2010, issue 12
Vasiliy V. Skopetsky, Vladimir M. Bulavatskiy
Mathematical Modeling of Nonlinear Competitive Two-Component Diffusion in Media of Nanoporous Particles
Journal of Automation and Information Sciences, Vol.41, 2009, issue 3
Mikhail R. Petryk, Jack Fraissard
Two-Scale Modeling of Tissue Perfusion Problem Using Homogenization of Dual Porous Media
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Robert Cimrman, Eduard Rohan
WELL-POSEDNESS AND NUMERICAL SOLUTION OF A NONLINEAR VOLTERRA PARTIAL INTEGRO-DIFFERENTIAL EQUATION MODELING A SWELLING POROUS MATERIAL
Journal of Porous Media, Vol.17, 2014, issue 9
Kristian Sandberg, Jinhai Chen, Keith J. Wojciechowski, Lynn Schreyer-Bennethum