Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Automation and Information Sciences
SJR: 0.238 SNIP: 0.464 CiteScore™: 0.27

ISSN Imprimer: 1064-2315
ISSN En ligne: 2163-9337

Volumes:
Volume 51, 2019 Volume 50, 2018 Volume 49, 2017 Volume 48, 2016 Volume 47, 2015 Volume 46, 2014 Volume 45, 2013 Volume 44, 2012 Volume 43, 2011 Volume 42, 2010 Volume 41, 2009 Volume 40, 2008 Volume 39, 2007 Volume 38, 2006 Volume 37, 2005 Volume 36, 2004 Volume 35, 2003 Volume 34, 2002 Volume 33, 2001 Volume 32, 2000 Volume 31, 1999 Volume 30, 1998 Volume 29, 1997 Volume 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v48.i9.10
pages 1-22

Valuation of Startups Investment Attractiveness Based on Neuro-Fuzzy Technologies

Elena M. Kiseleva
Oles Honchar Dnipro National University, Dnepr
Olga M. Prytomanova
Oles Honchar Dnepropetrovsk National University
Sergey V. Zhuravel
Oles Honchar Dnepropetrovsk National University

RÉSUMÉ

A mathematical model for evaluating startups investment attractiveness based on neuro-fuzzy technologies is proposed. It allows one to take into account not only a statistical uncertainty but also a linguistic one. The parameters optimization of created fuzzy model on the stage of its adjustment is performed using one of the undifferential optimization methods − Shor r- algorithm. The software that implements the proposed approach is developed. The results of modeling to define real startups investment attractiveness are presented


Articles with similar content:

Mathematical Model of Recognition Systems with Small Databases
Journal of Automation and Information Sciences, Vol.39, 2007, issue 10
Vitaliy A. Tayanov, Boris E. Kapustiy, Bogdan P. Rusyn
Bayesian Strategy for Group Decision Making and its Interval Generalization
Journal of Automation and Information Sciences, Vol.51, 2019, issue 1
Olga A. Zhukovskaya, Leonid S. Fainzilberg
Modification of Prony's Method in the Problem of Determining the Parameters of Sinusoids
Journal of Automation and Information Sciences, Vol.44, 2012, issue 9
Alexander S. Apostolyuk, Vladimir B. Larin
SELF-LEARNING METHODS IN THE SPACE OF IMAGE STRUCTURAL SIGN CRITERIONS
Telecommunications and Radio Engineering, Vol.74, 2015, issue 18
V. A. Gorokhovatskiy, A. Ye. Berestovsky, Ye. P. Putyatin
NOISE IMMUNITY OF A SYSTEM WITH PSEUDORANDOM SIGNALS AND REED−MULLER CODE
Telecommunications and Radio Engineering, Vol.72, 2013, issue 13
S. D. Khvorov, R. R. Bikkenin