Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN Imprimer: 1064-2315
ISSN En ligne: 2163-9337

Volumes:
Volume 51, 2019 Volume 50, 2018 Volume 49, 2017 Volume 48, 2016 Volume 47, 2015 Volume 46, 2014 Volume 45, 2013 Volume 44, 2012 Volume 43, 2011 Volume 42, 2010 Volume 41, 2009 Volume 40, 2008 Volume 39, 2007 Volume 38, 2006 Volume 37, 2005 Volume 36, 2004 Volume 35, 2003 Volume 34, 2002 Volume 33, 2001 Volume 32, 2000 Volume 31, 1999 Volume 30, 1998 Volume 29, 1997 Volume 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v36.i2.50
pages 51-56

Analysis of Variables and Parameters of Genetic Algorithms for Production Process Planning

Tadeush Witkowski
Warsaw University, Poland
Soliman Elzway
Warsaw Polytechnical Institute, Poland
Arkadiush Antchak
Lodz Polytechnical Institute, Poland

RÉSUMÉ

The influence of main parameters and variables of genetic algorithms on efficient solution of optimization problem is considered. The data on adaptive organization of parameter selection are presented. Experimental efficiency estimates of genetic algorithms applied to problems of production process planning are considered.


Articles with similar content:

CONTINUOUS MONITORING OF A FIBER-OPTICAL BASEBAND TRANSMISSION PATH BASED ON INTELLECTUAL OPTICAL-SIGNAL PROCESSING FACILITIES
Telecommunications and Radio Engineering, Vol.70, 2011, issue 16
I. A. Saitov, D. Yu. Muzalevskii
Control of Heat Supply System with Structural Changeable Hardware
Journal of Automation and Information Sciences, Vol.46, 2014, issue 6
Sergey V. Babych , Oxana B. Maksimova , Valentin O. Davydov
Robust Multiobjective Identification of Nonlinear Objects Based on Evolving Radial Basis Networks
Journal of Automation and Information Sciences, Vol.45, 2013, issue 9
Alexander A. Bezsonov, Oleg G. Rudenko
Synthesis Method of Empirical Models Optimal by Complexity under Uncertainty Conditions
Journal of Automation and Information Sciences, Vol.48, 2016, issue 9
Taras V. Humenyuk , Mikhail I. Gorbiychuk
Designing of the Main Operations of Genetic Algorithms for Production Scheduling
Journal of Automation and Information Sciences, Vol.35, 2003, issue 12
Tadeush Witkowski, Arkadiush Antchak, Soliman Elzway