Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Automation and Information Sciences
SJR: 0.275 SNIP: 0.59 CiteScore™: 0.8

ISSN Imprimer: 1064-2315
ISSN En ligne: 2163-9337

Volumes:
Volume 52, 2020 Volume 51, 2019 Volume 50, 2018 Volume 49, 2017 Volume 48, 2016 Volume 47, 2015 Volume 46, 2014 Volume 45, 2013 Volume 44, 2012 Volume 43, 2011 Volume 42, 2010 Volume 41, 2009 Volume 40, 2008 Volume 39, 2007 Volume 38, 2006 Volume 37, 2005 Volume 36, 2004 Volume 35, 2003 Volume 34, 2002 Volume 33, 2001 Volume 32, 2000 Volume 31, 1999 Volume 30, 1998 Volume 29, 1997 Volume 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v29.i1.100
pages 81-90

Modified Kaczmage Algorithm for Estimating Parameters of Nonstationary Objects

B. D. Liberal'
Kharkov Technical University for Radioelectronics
Oleg G. Rudenko
Kharkov National University of Radio and Electronics, Kharkov
V. A. Timofeev
Kharkov Technical University for Radioelectronics

RÉSUMÉ

Consideration is given to a generalized Kaczmage algorithm with weighting estimates at several steps and its application to the problem of estimating nonstationary parameters of objects that are described by a regression equation. The main characteristics of the algorithm operation, such as the bias of the estimator, the root-mean-square error, the domain of convergence, and the rate of convergence into the domain in the presence of measurement errors, have been calculated.

RÉFÉRENCES

  1. Dupac, V., A Dynamic Stochastic Approximation Method.

  2. Okrug, A. I., Dynamic Kaczmage Algorithm.

  3. Tsypkin, Ya. Z., Kaplinskii, A. I., and Larionov, K. A., Adaptation Algorithms and Learning under Nonstationary Conditions.

  4. Ishchenko, L. A., Liberol', B. D., and Rudenko, O. G., On the Properties of One Class of Multistage Adaptive Algorithms of Identification.

  5. Ishchenko, L. A., Liberol', B. D., and Rudenko, O. G., Adaptive Estimation of the Parameters of Nonstationary Objects.

  6. Polyak, B. T., Comparison of the Rates of Convergence of Single-Step and Multistage Algorithms of Optimization in the Presence of Disturbances.

  7. Lancaster, P., Theory of Matrices.


Articles with similar content:

Modeling in Class of Systems of Regression Equations with Random Coefficients under Conditions of Structural Uncertainty
Journal of Automation and Information Sciences, Vol.40, 2008, issue 4
Alexander P. Sarychev
IDENTIFICATION OF TRANSIENT INTERNAL HEAT SOURCE USING MODIFIED LEVENBERG−MARQUARDT ALGORITHM
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Shubhankar Chakraborty, P. K. Das
Uniform Approximations of Functions of Lipschitz Class by Threeharmonic Poisson Integrals
Journal of Automation and Information Sciences, Vol.49, 2017, issue 12
Ulyana Z. Hrabova
Guaranteed Estimation of Parameters of Linear Algebraic Equations for Nonstationary Observations
Journal of Automation and Information Sciences, Vol.46, 2014, issue 1
Alexander G. Nakonechnyi, Sergey V. Demydenko
Walsh Functions in Linear-Quadratic Optimization Problems of Linear Nonstationary Systems
Journal of Automation and Information Sciences, Vol.51, 2019, issue 8
Yuriy A. Timoshin , Alexander A. Stenin, Irina G. Drozdovich