Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Immunology
Facteur d'impact: 1.352 Facteur d'impact sur 5 ans: 3.347 SJR: 1.022 SNIP: 0.55 CiteScore™: 2.19

ISSN Imprimer: 1040-8401
ISSN En ligne: 2162-6472

Volume 39, 2019 Volume 38, 2018 Volume 37, 2017 Volume 36, 2016 Volume 35, 2015 Volume 34, 2014 Volume 33, 2013 Volume 32, 2012 Volume 31, 2011 Volume 30, 2010 Volume 29, 2009 Volume 28, 2008 Volume 27, 2007 Volume 26, 2006 Volume 25, 2005 Volume 24, 2004 Volume 23, 2003 Volume 22, 2002 Volume 21, 2001 Volume 20, 2000 Volume 19, 1999 Volume 18, 1998 Volume 17, 1997 Volume 16, 1996 Volume 15, 1995 Volume 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v30.i3.70
pages 299-304

The Intertwining of Structure and Function: Proposed Helix-Swapping of the SH2 Domain of Grb7, A Regulatory Protein Implicated in Cancer Progression and Inflammation

Sally Pias
New Mexico State University
Tabitha A. Peterson
Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico
Dennis L. Johnson
Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico
Barbara A. Lyons
Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico


Grb7 is a multidomain intracellular signaling protein that links activated tyrosine kinases with downstream signaling targets. Best known for its regulatory role in cell migration and tumor metastasis, Grb7 also regulates inflammation by coupling NF-kappaB-inducing kinase with erbB/EGFR family receptors. The "adaptor" role of Grb7 in these processes depends upon binding to membrane-associated tyrosine kinases through its C-terminal SH2 domain. The Grb7-SH2 domain shares structural and functional similarity with the SH2 domain of Grb2, a constituent of the MAP kinase pathway. Both domains show unusual affinity for cyclic (beta-turn) ligands. The Grb2-SH2 domain also shows distinctive self-association behavior, forming intertwined ("swapped") dimers. While Grb7 and its SH2 domain are each known to dimerize, the mechanisms and functional significance of this self-association are incompletely understood. Additional residues in the Grb7-SH2 domain effectively lengthen its "EF loop" and render the domain a good candidate for swapped dimerization, through exchange of a C-terminal helix. We propose the existence of a swapped dimeric form of the Grb7-SH2 domain and offer a structural model derived through novel application of nuclear magnetic resonance-derived restraints

Articles with similar content:

The Cbl Family of Signal Transduction Molecules
Critical Reviews™ in Oncogenesis, Vol.8, 1997, issue 4
Linda Smit , Jannie Borst
C/EBPα Dysregulation in AML and ALL
Critical Reviews™ in Oncogenesis, Vol.16, 2011, issue 1-2
Alan Friedman, Ido Paz-Priel
Regulation of aicda Expression and AID Activity: Relevance to Somatic Hypermutation and Class Switch DNA Recombination
Critical Reviews™ in Immunology, Vol.27, 2007, issue 4
Ahmed Al-Qahtani, Seok-Rae Park, Egest J. Pone, Paolo Casali, Hong Zan, Zhenming Xu
Mechanisms of Transformation by MLL
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 4
Jay L. Hess
Role of SLAM Family Receptors and Specific Adapter SAP in Innate-Like Lymphocytes
Critical Reviews™ in Immunology, Vol.34, 2014, issue 4
Jordi Sintes, Xavier Romero, Pablo Engel