Abonnement à la biblothèque: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Publication de 6  numéros par an

ISSN Imprimer: 0743-4863

ISSN En ligne: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Polymeric Micelles for the Treatment of Rheumatoid Arthritis

Volume 36, Numéro 3, 2019, pp. 219-238
DOI: 10.1615/CritRevTherDrugCarrierSyst.2018021833
Get accessGet access

RÉSUMÉ

Rheumatoid arthritis (RA) affects around 1% of the world's population and places heavy burdens on patients and society. RA pathogenesis has been studied for centuries, and findings suggest that it is activated by varied factors such as infection, genetic activation, and environmental changes, and travels differential pathways in patients, which increases the difficulty of treatment. There is currently no cure for RA. Current treatments inhibit inflammation, protect joints, and suppress immune cells like macrophages and T-lymphocytes. However, these therapies usually have issues of ineffectiveness, drug resistance, and many side effects. The reason is that therapies like methotrexate (MTX), dexamethasone (Dex), and cyclosporine A (CsA) are very lipophilic and have broad distribution in vivo. Micelles are ideal carriers to increase the solubility, bioavailability, half-life, and targeting of these hydrophobic drugs, and thus can be used for RA treatment. In the past decade, micelle-based therapies have become an attractive new strategy for RA treatment. This review summarizes the merits of micelles for RA, the therapeutic targets for RA, and studies that show the recent progress of developed micelles for RA. We compare the composition, performance, potential merits, and limitations of current therapies, and discusses the future directions of advanced and smart micelles for RA.

RÉFÉRENCES
  1. Quan L, Zhang Y, Crielaard BJ, Dusad A, Lele SM, Rijcken CJF, Metselaar JM, Kostkova H, Etrych T, Ulbrich K, Kiessling F, Mikuls TR, Hennink WE, Storm G, Lammers T, Wang D. , Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano. 2014;8(1):458–66.

  2. Li C, Li H, Wang Q, Zhou M, Li M, Gong T, Zhang Z, Sun X. , pH-sensitive polymeric micelles for targeted delivery to inflamed joints. J Controlled Release. 2017;246:133–41.

  3. Luhder F, Reichardt HM. , Novel drug delivery systems tailored for improved administration of glucocorticoids. Int J Mol Sci. 2017;18(9):1836–54.

  4. Bader H, Ringsdorf H, Schmidt B. , Watersoluble polymers in medicine. Die Angewandte Makromolekulare Chemie. 1984;123(1):457–85.

  5. Zhang N, Wardwell PR, Bader RA. , Polysaccharide-based micelles for drug delivery. Pharmaceutics. 2013;5(2):329–52.

  6. Maity B, Chatterjee A, Ahmed SA, Seth D. , Interaction of the nonsteroidal anti-inflammatory drug indomethacin with micelles and its release. J Phys Chem B. 2015;119(9):3776–85.

  7. Yokoyama M. , Polymeric micelles as drug carriers: their lights and shadows. J Drug Targeting. 2014;22(7):576–83.

  8. Reddy BP, Yadav HK, Nagesha DK, Raizaday A, Karim A. , Polymeric micelles as novel carriers for poorly soluble drugs—a review. J Nanosci Nanotechnol. 2015;15(6):4009–18.

  9. Kore G, Kolate A, Nej A, Misra A. , Polymeric micelles as multifunctional pharmaceutical carriers. J Nanosci Nanotechnol. 2014;14(1):288–307.

  10. Bader RA, Silvers AL, Zhang N. , Polysialic acid-based micelles for encapsulation of hydrophobic drugs. Biomacromol. 2011;12(2):314–20.

  11. Allijn IE, Schiffelers RM, Storm G. , Comparison of pharmaceutical nanoformulations for curcumin: enhancement of aqueous solubility and carrier retention. Int J Pharma. 2016;506(1-2):407–13.

  12. Wang DA, Narang AS, Kotb M, Gaber AO, Miller DD, Kim SW, Mahato RI. , Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromol. 2002;3(6):1197–207.

  13. Brunot C, Ponsonnet L, Lagneau C, Farge P, Picart C, Grosgogeat B. , Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomat. 2007;28(4):632–40.

  14. Grandinetti G, Ingle NP, Reineke TM. , Interaction of poly(ethylenimine)-DNA polyplexes with mitochondria: implications for a mechanism of cytotoxicity. Mol Pharm. 2011;8(5):1709–19.

  15. Crielaard BJ, Rijcken CJ, Quan L, van der Wal S, Altintas I, van der Pot M, Kruijtzer JA, Liskamp RM, Schiffelers RM, van Nostrum CF, Hennink WE, Wang D, Lammers T, Storm G. , Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angewandte Chemie. 2012;51(29):7254–8.

  16. Wu H, Wang K, Wang H, Chen F, Huang W, Chen Y, Chen J, Tao J, Wen X, Xiong S. , Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy. Colloid Surf, B. 2017;149:97–104.

  17. Kanazawa T, Endo T, Arima N, Ibaraki H, Takashima Y, Seta Y, Systemic delivery of small interfering RNA targeting nuclear factor kappa B in mice with collagen-induced arthritis using arginine-histidine-cysteine based oligopeptide-modified polymer nanomicelles. Int J Pharma. 2016;515(1-2):315–23.

  18. Wang Q, Jiang H, Li Y, Chen W, Li H, Peng K, Zhang Z, Sun X. , Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy. Biomat. 2017;122:10–22.

  19. Zhang JX, Yan MQ, Li XH, Qiu LY, Li XD, Li XJ, Jin Y, Zhu KJ. , Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes. Pharm Res. 2007;24(10):1944–53.

  20. Bachar M, Mandelbaum A, Portnaya I, Perlstein H, Even-Chen S, Barenholz Y, Danino D. , Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled beta-casein micelles. J Controlled Release. 2012;160(2):164–71.

  21. Wilson DR, Zhang N, Silvers AL, Forstner MB, Bader RA. , Synthesis and evaluation of cyclosporine A-loaded polysialic acid-polycaprolactone micelles for rheumatoid arthritis. European J Pharma Sci. 2014;51:146–56.

  22. Koo OM, Rubinstein I, Onyuksel H. , Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm Res. 2011;28(4):776–87.

  23. Koo OM, Rubinstein I, Onyuksel H. , Camptothecin in sterically stabilized phospholipid micelles: a novel nanomedicine. Nanomed. 2005;1(1):77–84.

  24. Sethi V, Rubinstein I, Kuzmis A, Kastrissios H, Artwohl J, Onyuksel H. , Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol Pharm. 2013;10(2):728–38.

  25. Lu Y, Parker N, Kleindl PJ, Cross VA, Wollak K, Westrick E, Stinnette TW, Gehrke MA, Wang K, Santhapuram HK, You F, Hahn SJ, Vaughn JF, Klein PJ, Vlahov IR, Low PS, Leamon CP. , Antiinflammatory activity of a novel folic acid targeted conjugate of the mTOR inhibitor everolimus. Mol Med. 2015;21:584–96.

  26. Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. , Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J Controlled Release. 2016;230:64–72.

  27. Thambi T, Son S, Lee DS, Park JH. , Poly(ethylene glycol)-b-poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery. Acta Biomater. 2016;29:261–70.

  28. Mohammadi M, Li Y, Abebe DG, Xie Y, Kandil R, Kraus T, Gomez-Lopez N, Fujiwara T, Merkel OM. , Folate receptor targeted three-layered micelles and hydrogels for gene delivery to activated macrophages. J Controlled Release. 2016;244(Pt B):269–79.

  29. Feldmann M, Brennan FM, Maini RN. , Rheumatoid arthritis. Cell. 1996;85(3):307–10.

  30. Lee DM, Weinblatt ME. , Rheumatoid arthritis. Lancet. 2001;358(9285):903–11.

  31. Anderson ST. , Mortality in rheumatoid arthritis: do age and gender make a difference? Semin Arthritis Rheum. 1996;25(5):291–6.

  32. Abolmaali SS, Tamaddon AM, Dinarvand R. , A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemother Pharmacol. 2013;71(5):1115–30.

  33. Yazici Y. , Treatment of rheumatoid arthritis: we are getting there. Lancet. 2009;374(9685):178–80.

  34. Cheng T, Liu J, Ren J, Huang F, Ou H, Ding Y, Zhang Y, Ma R, An Y, Liu J, Shi L. , green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance. Theranostics. 2016;6(9):1277–92.

  35. Li J, Xu R, Lu X, He J, Jin S. , A simple reduction-sensitive micelle co-delivery of paclitaxel and dasatinib to overcome tumor multidrug resistance. Int J Nanomed. 2017;12:8043–56.

  36. Neumann E, Lefèvre S, Zimmermann B, Gay S, Müller-Ladner U. , Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med. 2010;16(10):458–68.

  37. Szekanecz Z, Besenyei T, Paragh G, Koch AE. , Angiogenesis in rheumatoid arthritis. Autoimmunity. 2009;42(7):563–73.

  38. Szekanecz Z, Koch AE. , Angiogenesis and its targeting in rheumatoid arthritis. Vasc Pharmacol. 2009;51(1):1–7.

  39. Gal I, Bajnok E, Szanto S, Sarraj B, Glant TT, Mikecz K. , Visualization and in situ analysis of leukocyte trafficking into the ankle joint in a systemic murine model of rheumatoid arthritis. Semin Arthritis Rheum. 2005;52(10):3269–78.

  40. Yuan F, Quan LD, Cui L, Goldring SR, Wang D. , Development of macromolecular prodrug for rheumatoid arthritis. Adv Drug Deliv Rev. 2012;64(12):1205–19.

  41. Beauchesne PR, Chung NS, Wasan KM. , Cyclosporine A: a review of current oral and intravenous delivery systems. Drug DevInd Pharm. 2007;33(3):211–20.

  42. Shin JM, Kim SH, Thambi T, You DG, Jeon J, Lee JO, Chung BY, Jo DG, Park JH. , A hyaluronic acid-methotrexate conjugate for targeted therapy of rheumatoid arthritis. Chem Commun. 2014;50(57):7632–5.

  43. Xu XL, Li WS, Wang XJ, Du YL, Kang XQ, Hu JB, Li SJ, Ying XY, You J, Du YZ. , Endogenous sialic acid-engineered micelles: a multifunctional platform for on-demand methotrexate delivery and bone repair of rheumatoid arthritis. Nanoscale. 2018;10(6):2923–35.

  44. Ghosh S, Karin M. , Missing pieces in the NF-kappaB puzzle. Cell. 2002;109(Suppl):S81–96.

  45. Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimpson SA, Baldwin AS, Makarov SS. , NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci U S A. 1998;95(23):13859–64.

  46. Noort AR, Tak PP, Tas SW. , Non-canonical NF-kappaB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? Arthritis Res Ther. 2015;17:15.

  47. Noort AR, van Zoest KP, Weijers EM, Koolwijk P, Maracle CX, Novack DV, Siemerink MJ, Schlingemann RO, Tak PP, Tas SW. , NF-kappaB-inducing kinase is a key regulator of inflammation-induced and tumour-associated angiogenesis. J Pathol. 2014;234(3):375–85.

  48. Sehnert B, Burkhardt H, Wessels JT, Schroder A, May MJ, Vestweber D, Zwerina J, Warnatz K, Nimmerjahn F, Schett G, Dubel S, Voll RE., NF-kappaB inhibitor targeted to activated endothelium demonstrates a critical role of endothelial NF-kappaB in immune-mediated diseases. Proc Natl Acad Sci U S A. 2013;110(41):16556–61.

  49. Haddad JJ, Abdel-Karim NE. , NF-kappaB cellular and molecular regulatory mechanisms and pathways: therapeutic pattern or pseudoregulation? Cell Immunol. 2011;271(1):5–14.

  50. Cabral H, Kataoka K. , Progress of drug-loaded polymeric micelles into clinical studies. J Controlled Release. 2014;190:465–76.

  51. Wang Q, Sun X. , Recent advances in nanomedicines for the treatment of rheumatoid arthritis. Biomat Sci. 2017;5(8):1407–20.

  52. Zhao G, Zhang H. , Notch-1 siRNA and methotrexate towards a multifunctional approach in rhematoid arthritis management: a nanomedicine approach. Pharm Res. 2018;35(6):123.

  53. New R, Bansal GS, Dryjska M, Bogus M, Green P, Feldmann M, Brennan F. , Design and optimisation of bioactive cyclic peptides: generation of a down-regulator of TNF secretion. Molecules. 2014;19(12):21529–40.

CITÉ PAR
  1. Li Na, Qiao Yonghui, Xue Lingping, Xu Shiqi, Zhang Nan, Targeted and MMP-2/9 responsive peptides for the treatment of rheumatoid arthritis, International Journal of Pharmaceutics, 569, 2019. Crossref

  2. Wang Ziyi, Chu Xiao, Li Na, Fu Lingling, Gu Hongzhou, Zhang Nan, Engineered DNA nanodrugs alleviate inflammation in inflammatory arthritis, International Journal of Pharmaceutics, 577, 2020. Crossref

  3. Xue Lingping, Wang Dongli, Zhang Xiaoyu, Xu Shiqi, Zhang Nan, Targeted and triple therapy-based liposomes for enhanced treatment of rheumatoid arthritis, International Journal of Pharmaceutics, 586, 2020. Crossref

  4. Bilal Muhammad, Qindeel Maimoona, Nunes Leonardo Vieira, Duarte Marco Thúlio Saviatto, Ferreira Luiz Fernando Romanholo, Soriano Renato Nery, Iqbal Hafiz M. N., Marine-Derived Biologically Active Compounds for the Potential Treatment of Rheumatoid Arthritis, Marine Drugs, 19, 1, 2020. Crossref

  5. Moody Terry W., Jensen Robert T., Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide (Part 2): biology and clinical importance in central nervous system and inflammatory disorders, Current Opinion in Endocrinology, Diabetes & Obesity, 28, 2, 2021. Crossref

  6. Hosseinikhah Seyedeh Maryam, Barani Mahmood, Rahdar Abbas, Madry Henning, Arshad Rabia, Mohammadzadeh Vahideh, Cucchiarini Magali, Nanomaterials for the Diagnosis and Treatment of Inflammatory Arthritis, International Journal of Molecular Sciences, 22, 6, 2021. Crossref

  7. Shang Hongtao, Gu Huan, Zhang Nan, From traditional to novel treatment of arthritis: a review of recent advances in nanotechnology-based thermal therapy, Nanomedicine, 16, 23, 2021. Crossref

  8. Younas Ayesha, Gu Hongzhou, Zhao Yongxing, Zhang Nan, Novel approaches of the nanotechnology-based drug delivery systems for knee joint injuries: A review, International Journal of Pharmaceutics, 608, 2021. Crossref

  9. Wang Ziyi, Yang Jing, Yang Yang, Pu Xiaorong, Zhao Jingnan, Zhang Nan, Targeted and Combined TPCA-1-Gold Nanocage Therapy for In Vivo Treatment of Inflammatory Arthritis, AAPS PharmSciTech, 21, 8, 2020. Crossref

  10. Shang Hongtao, Younas Ayesha, Zhang Nan, Recent advances on transdermal delivery systems for the treatment of arthritic injuries: From classical treatment to nanomedicines, WIREs Nanomedicine and Nanobiotechnology, 14, 3, 2022. Crossref

  11. Yao Yao, Cai Xiaoyu, Zheng Yongquan, Zhang Meng, Fei Weidong, Sun Dongli, Zhao Mengdan, Ye Yiqing, Zheng Caihong, Short‐chain fatty acids regulate B cells differentiation via the FFA2 receptor to alleviate rheumatoid arthritis, British Journal of Pharmacology, 179, 17, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain