Abonnement à la biblothèque: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Publication de 6  numéros par an

ISSN Imprimer: 0743-4863

ISSN En ligne: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Nanoformulations and Highlights of Clinical Studies for Ocular Drug Delivery Systems: An Overview

Volume 38, Numéro 4, 2021, pp. 79-107
DOI: 10.1615/CritRevTherDrugCarrierSyst.2021035767
Get accessDownload

RÉSUMÉ

Several ocular drug delivery (ODD) systems, like hydrogels, microparticles, nano-emulsions, micro-emulsions, and liposomes have been researched, which can govern the drug release and sustain therapeutic levels for a delayed period in the eye. While new drugs targeting methods to the eye are possible by various nanoparticles. Presently in the market, there are fewer choices and need for novel nano-ocular delivery systems as well as therapies for prolonged delivery to the anterior and posterior eye segments. The primary objective of this article is to summarize current discoveries and proven activities of different nano- and microsystems in ODD. This article also depicts some regulatory updates along with the patents granted to the inventor for their work on ODD. Overall, a thought of how the different forthcoming of nanotechnologies like nanoparticles and nanomedicine can be used to investigate the frontiers of ODD and treatment can be withdrawn by this article.

RÉFÉRENCES
  1. Bourne RR, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: A systematic review and meta-analysis. Lancet Global Health. 2017;5(9):e888.

  2. Fricke TR, Tahhan N, Resnikoff S, Papas E, Burnett A, Ho SM, Naduvilath T, Naidoo KS. Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: Systematic review, meta-analysis, and modelling. Ophthalmology. 2018;125(10):1492-9.

  3. Tsai CH, Wang PY, Lin IC, Huang H, Liu GS, Tseng CL. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci. 2018;19(9):2830.

  4. Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev. 2018;126:96-112.

  5. Kuno N, Fujii S. Recent advances in ocular drug delivery systems. Polymers. 2011;3(1):193-221.

  6. Gause S, Hsu KH, Shafor C, Dixon P, Powell KC, Chauhan A. Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses. Adv Colloid Interf Sci. 2016;233:139-54.

  7. Kim YC, Chiang B, Wu X, Prausnitz MR. Ocular delivery of macromolecules. J Control Release. 2014;190:172-81.

  8. Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature. Eye. 2013;27(7):787-94.

  9. Gelfuso GM, Ferreira-Nunes R, Dalmolin LF, Re AC, dos Santos GA, de Sa FA, Cunha-Filho M, Alonso A, Neto SA, Anjos JL, Aires CP. Iontophoresis enhances voriconazole antifungal potency and corneal penetration. Int J Pharm. 2020;576:118991.

  10. Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release. 2020;321:1-22.

  11. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol. 2013;2(2):47.

  12. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348.

  13. Liu S, Jones L, Gu FX. Nanomaterials for ocular drug delivery. Macromol Biosci. 2012;12(5):608.

  14. Kapadia R. Design, development and evaluation of nanoparticulate based carrier systems for ocular drug delivery [Doctoral dissertation]. Vadodara, India: The Maharaja Sayajirao University of Baroda; 2014.

  15. Galli M, Rossotti B, Maggioni D, Ferretti AM, Ferruti P, Ranucci E. A new catechol-functionalized poly(amidoamine) as an effective nanoparticle stabilizer. Milan Polymer Days; 2017. p. 83-3.

  16. Thomas S, Grohens Y, Ninan N, editors. Nanotechnology applications for tissue engineering. India, William Andrew; 2015.

  17. Battaglia L, Serpe L, Foglietta F, Muntoni E, Gallarate M, Del Pozo Rodriguez A, Solinis MA. Application of lipid nanoparticles to ocular drug delivery. Exp Opin Drug Deliv. 2016;13(12): 1743-57.

  18. Desai A, Shukla M, Maulvi F, Ranch K. Ophthalmic and otic drug administration: Novel approaches and challenges. In: Misra A, Shahiwala A, editors. Novel Drug Delivery Technologies. Singapore: Springer; 2019. p. 335-81.

  19. Singh J, Garg T, Rath G, Goyal AK. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuber-culosis-a critical review. Drug Deliv. 2016;23(5):1676-98.

  20. He Y, Liu Y, Liu Y, Wang J, Zhang X, Lu W, Ma Z, Zhu X, Zhang Q. Cyclosporine-loaded micro-spheres for treatment of uveitis: In vitro characterization and in vivo pharmacokinetic study. Invest Ophthalmol Vis Sci. 2006;47(9):3983-8.

  21. Ganesan P, Narayanasamy D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm. 2017;6:37-56.

  22. Lallemand F, Daull P, Benita S, Buggage R, Garrigue JS. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J Drug Deliv. 2012;2012:604204.

  23. Laxmi M, Bhardwaj A, Mehta S, Mehta A. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif Cells Nanomed Biotechnol. 2015;43(5):334-44.

  24. Gokce EH, Sandri G, Egrilmez S, Bonferoni MC, Guneri T, Caramella C. Cyclosporine A-loaded solid lipid nanoparticles: Ocular tolerance and in vivo drug release in rabbit eyes. Curr Eye Res. 2009;34(11):996-1003.

  25. Battaglia L, D'Adino I, Peira E, Trotta M, Gallarate M. Solid lipid nanoparticles prepared by coacer-vation method as vehicles for ocular cyclosporine. J Drug Deliv Sci Technol. 2012;22(2):125.

  26. Hegde RR, Verma A, Ghosh A. Microemulsion: New insights into the ocular drug delivery. ISRN Pharm. 2013;2013:826798.

  27. Ayaki M, Iwasawa A, Yaguchi S, Koide R. Preserved and unpreserved 12 anti-allergic ophthalmic solutions and ocular surface toxicity: In vitro assessment in four cultured corneal and conjunctival epithelial cell lines. Biocontrol Sci. 2010;15(4):143-8.

  28. Muzaffar FA, Singh UK, Chauhan L. Review on microemulsion as futuristic drug delivery. Int J Pharm Pharm Sci. 2013;5(3):39-53.

  29. Esfanjani AF, Assadpour E, Jafari SM. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci Technol. 2018;76:56-66.

  30. Yoncheva K, Vandervoort J, Ludwig A. Development of mucoadhesive poly(lactide-co-glycolide) nanoparticles for ocular application. Pharm Dev Technol. 2011;16(1):29-35.

  31. Glisoni RJ, Garcia-Fernandez MJ, Pino M, Gutkind G, Moglioni AG, Alvarez-Lorenzo C, Concheiro A, Sosnik A. .-cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydr Polym. 2013;93(2):449-57.

  32. Chime SA, Onyishi IV. Lipid-based drug delivery systems (LDDS): Recent advances and applications of lipids in drug delivery. Afr J Pharm Pharmacol. 2013;7(48):3034-59.

  33. Montano MD, Olesik JW, Barber AG, Challis K, Ranville JF. Single particle ICP-MS: Advances toward routine analysis of nanomaterials. Anal Bioanal Chem. 2016;408(19):5053-74.

  34. Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017; 122:31-64.

  35. Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today. 2019;24(8):1524-38.

  36. Liu S, Dozois MD, Chang CN, Ahmad A, Ng DL, Hileeto D, Liang H, Reyad MM, Boyd S, Jones LW, Gu FX. Prolonged ocular retention of mucoadhesive nanoparticle eye drop formulation enables treatment of eye diseases using significantly reduced dosage. Mol Pharm. 2016;13(9):2897-905.

  37. Baig MS, Ahad A, Aslam M, Imam SS, Aqil M, Ali A. Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int J Biol Macromol. 2016;85:258.

  38. Nagai N, Ito Y, Okamoto N, Shimomura Y. A nanoparticle formulation reduces the corneal toxicity of indomethacin eye drops and enhances its corneal permeability. Toxicology. 2014;319:53-62.

  39. Reimondez-Troitino S, Csaba N, Alonso MJ, De La Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015;95:279-93.

  40. Kompella UB, Amrite AC, Ravi RP, Durazo SA. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res. 2013;36:172-98.

  41. Yang X, Patel A, Vadlapudi AD, Mitra AK. Application of nanotechnology in ocular drug delivery. Sharjah, United Arab Emirates: Bentham Science Publishers; 2013.

  42. Khan FU. Polymeric therapeutic nanoparticles: Design, development and evaluation for ophthalmic drug delivery system [Doctoral dissertation]. Peshawar, Pakistan: University of Peshawar; 2018.

  43. Sulheim E, Iversen TG, Nakstad VT, Klinkenberg G, Sletta H, Schmid R, Hatletveit AR, Wagbo AM, Sundan A, Skotland T, Sandvig K. Cytotoxicity of poly(alkyl cyanoacrylate) nanoparticles. Int J Mol Sci. 2017;18(11):2454.

  44. Paliwal R, Paliwal SR, Sulakhiya K, Kurmi BD, Kenwat R, Mamgain A. Chitosan-based nanocarriers for ophthalmic applications. In: Maiti S, Jana S, editors. Polysaccharide Carriers for Drug Delivery. Cambridge: Woodhead Publishing; 2019. p. 79-104.

  45. Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31-64.

  46. Askari E, Seyfoori A, Amereh M, Gharaie SS, Ghazali HS, Ghazali ZS, Khunjush B, Akbari M. Stimuliresponsive hydrogels for local post-surgical drug delivery. Gels. 2020;6(2):14.

  47. Boddeda B, Boddu P, Avasarala H, Jayanti VR. Design and ocular tolerance of flurbiprofen loaded nanosuspension. Pharm Nanotechnol. 2015;3(1):56-67.

  48. Khattab WM, Zein El-Dein EE, El-Gizawy SA. Formulation of lyophilized oily-core poly-.-caprolactone nanocapsules to improve oral bioavailability of olmesartan medoxomil. Drug Dev Indust Pharm. 2020;46(5):795-805.

  49. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.

  50. Morrison E, inventor. Unilamellar niosomes having high K0w pharmacological compounds solvated therein and a method for the preparation thereof. United States patent application US 14/985,570. 2016 Jun 30.

  51. Abdelaziz HM, Gaber M, Abd-Elwakil MM, Mabrouk MT, Elgohary MM, Kamel NM, Kabary DM, Freag MS, Samaha MW, Mortada SM, Elkhodairy KA. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release. 2018; 269:374-92.

  52. Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: State of the art. J Colloid Sci Biotechnol. 2012;1(2):147-68.

  53. Kaur IP, Smitha R. Penetration enhancers and ocular bioadhesives: Two new avenues for ophthalmic drug delivery. Drug Dev Indust Pharm. 2002;28(4):353-69.

  54. Gan L, Wang J, Jiang M, Bartlett H, Ouyang D, Eperjesi F, Liu J, Gan Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today. 2013;18(5-6):290-7.

  55. Patel JK, Gevariya MH. Formulation and evaluation of sustained release ocular drug delivery system for an anti-glaucoma drug. Saurashtra University; 2013. p. 1-21.

  56. Abdelkader H, Alani AW, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014;21(2):87-100.

  57. Durak S, Esmaeili Rad M, Alp Yetisgin A, Eda Sutova H, Kutlu O, Cetinel S, Zarrabi A. Niosomal drug delivery systems for ocular disease: Recent advances and future prospects. Nanomaterials. 2020;10(6):1191.

  58. Dubald M, Bourgeois S, Andrieu V, Fessi H. Ophthalmic drug delivery systems for antibiotherapy: A review. Pharmaceutics. 2018;10(1):10.

  59. Zeng W, Li Q, Wan T, Liu C, Pan W, Wu Z, Zhang G, Pan J, Qin M, Lin Y, Wu C. Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: Mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability. Colloids Surf B Biointerfaces. 2016;141:28-35.

  60. Karn PR, Do Kim H, Kang H, Sun BK, Jin SE, Hwang SJ. Supercritical fluid-mediated liposomes containing cyclosporin A for the treatment of dry eye syndrome in a rabbit model: Comparative study with the conventional cyclosporin A emulsion. Int J Nanomed. 2014;9:3791.

  61. Nikoofal-Sahlabadi S, Mohajeri SA, Banaee T, Abedini E, Malaekeh-Nikouei B. Evaluation of cyclo-sporine A eye penetration after administration of liposomal or conventional forms in animal model. Nanomed J. 2013;1(1):48-54.

  62. Rukavina Z, Vanic Z. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics. 2016;8(2):18.

  63. Dong Y, Dong P, Huang D, Mei L, Xia Y, Wang Z, Pan X, Li G, Wu C. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm. 2015;91:82-90.

  64. Dong Y, Dong P, Huang D, Mei L, Xia Y, Wang Z, Pan X, Li G, Wu C. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm. 2015;91:82-90.

  65. Kesavan K, Kant S, Singh PN, Pandit JK. Mucoadhesive chitosan-coated cationic microemulsion of dexamethasone for ocular delivery: In vitro and in vivo evaluation. Curr Eye Res. 2013;38(3):342-52.

  66. Chen H, Pan H, Li P, Wang H, Wang X, Pan W, Yuan Y. The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system. Colloids Surf B Biointerfaces. 2016;143:455-62.

  67. Gan L, Wang J, Jiang M, Bartlett H, Ouyang D, Eperjesi F, Liu J, Gan Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today. 2013;18(5-6):290-7.

  68. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247.

  69. Noriega-Luna B, Godinez LA, Rodriguez FJ, Rodriguez A, Zaldivar-Lelo de Larrea G, Sosa-Ferreyra CF, Mercado-Curiel RF, Manriquez J, Bustos E. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomat. 2014 Jan 1.

  70. Meher JG, Kesharwani P, Chaurasia M, Singh A, Chourasia MK. Carbon nanotubes (CNTs): A novel drug delivery tool in brain tumor treatment. In: Kesharwani P, Gupta U, editors. Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. Academic Press; 2018. p. 375-96.

  71. Sahu P, Das D, Mishra VK, Kashaw V, Kashaw SK. Nanoemulsion: A novel eon in cancer chemo-therapy. Mini Rev Med Chem. 2017;17(18):1778-92.

  72. Patra JK, Das G, Fraceto LF, Campos EV, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018 Dec;16(1):1-33.

  73. Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019.

  74. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol. 2013;2(2):47.

  75. Caminade AM, Majoral JP. Positively charged phosphorus dendrimers. An overview of their properties. New J Chem. 2013;37(11):3358-73.

  76. Shcharbin D, Janaszewska A, Klajnert-Maculewicz B, Ziemba B, Dzmitruk V, Halets I, Loznikova S, Shcharbina N, Milowska K, Ionov M, Shakhbazau A. How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. J Control Release. 2014;181:40-52.

  77. Mishra V, Jain NK. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int J Pharm. 2014;461(1-2):380-90.

  78. Pal N, Saxena N, Mandal A. Phase behavior, solubilization, and phase transition of a microemulsion system stabilized by a novel surfactant synthesized from castor oil. J Chem Eng Data. 2017;62(4):1278-91.

  79. Thakur A, Walia MK, Kumar SL. Nanoemulsion in enhancement of bioavailability of poorly soluble drugs: A review. Pharmacophore. 2013;4(1):15-25.

  80. Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev Indust Pharm. 2013;39(11):1599-617.

  81. Kesavan K, Kant S, Singh PN, Pandit JK. Mucoadhesive chitosan-coated cationic microemulsion of dexamethasone for ocular delivery: In vitro and in vivo evaluation. Curr Eye Res. 2013;38(3):342-35.

  82. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, Chourasia MK. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release. 2017;252:28-49.

  83. Gautam N, Kesavan K. Development of microemulsions for ocular delivery. Ther Deliv. 2017;8(5):313-30.

  84. Bharti SK, Kesavan K. Phase-transition W/O microemulsions for ocular delivery: Evaluation of antibacterial activity in the treatment of bacterial keratitis. Ocular Immunol Inflamm. 2017;25(4):463-74.

  85. Gautam N, Kesavan K. Development of microemulsions for ocular delivery. Ther Deliv. 2017;8(5):313-30.

  86. Hegde RR, Verma A, Ghosh A. Microemulsion: New insights into the ocular drug delivery. ISRN Pharm. 2013;2013:826798.

  87. Chan J, Maghraby GM, Craig JP, Alany RG. Effect of water-in-oil microemulsions and lamellar liquid crystalline systems on the precorneal tear film of albino New Zealand rabbits. Clin Ophthalmol. 2008;2(1):129-38.

  88. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, Chourasia MK. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release. 2017;252:28-49.

  89. Yu B, Juan J, Su N. Clinical efficacy and safety of laparoscopic postoperative leuprolide in treatment of endometriotic cysts. Proc Anticancer Res. 2018;2(2):1-3.

  90. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, Chourasia MK. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release. 2017;252:28-49.

  91. Salimi A. Preparation and evaluation of celecoxib nanoemulsion for ocular drug delivery. Asian J Pharm. 2017;11(3):543-50.

  92. Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35(10):3365-83.

  93. Hwang YY, Ramalingam K, Bienek DR, Lee V, You T, Alvarez R. Antimicrobial activity of nanoemulsion in combination with cetylpyridinium chloride in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2013;57(8):3568-75.

  94. Ghosh V, Mukherjee A, Chandrasekaran N. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids Surf B Biointerfaces. 2014;114:392-7.

  95. Zhang Y, Shang Z, Gao C, Du M, Xu S, Song H, Liu T. Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery. AAPS PharmSciTech. 2014;15(4): 1000-8.

  96. Jiang SP, He SN, Li YL, Feng DL, Lu XY, Du YZ, Yu HY, Hu FQ, Yuan H. Preparation and characteristics of lipid nanoemulsion formulations loaded with doxorubicin. Int J Nanomed. 2013;8:3141.

  97. Sun W, Ma X, Wei X, Xu Y. Nano composite emulsion for sustained drug release and improved bio-availability. Pharm Res. 2014;31(10):2774-83.

  98. Peters MC, Santos Neto ED, Monteiro LM, Yukuyama MN, Machado MG, de Oliveira IF, Zanin MH, Lobenberg R, Bou-Chacra N. Advances in ophthalmic preparation: The role of drug nanocrystals and lipid-based nanosystems. J Drug Target. 2020 Mar 15;28(3):259-70.

  99. Nasr A, Gardouh A, Ghorab M. Novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: Design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics. 2016 Sep;8(3):20.

  100. Lim C, Kim DW, Sim T, Hoang NH, Lee JW, Lee ES, Youn YS, Oh KT. Preparation and characterization of a lutein loading nanoemulsion system for ophthalmic eye drops. J Drug Deliv Sci Technol. 2016;36:168-74.

  101. University of Waterloo. Comparison of tear evaporation rate with systane complete in dry eye and non-dry eye (BULLDOG). Available from: https://clinicaltrials.gov/ct2/show/NCT04091581.

  102. Alcon Research. Study of efficacy and tolerability of SYSTANE complete in patients with dry eye disease. Available from: https://clinicaltrials.gov/ct2/show/NCT03492541.

  103. King Saud University. Topical dexamethasone-cyclodextrin microparticle eye drops for diabetic macular edema (DECEDE). Available from: https://clinicaltrials.gov/ct2/show/NCT01523314.

  104. Taejoon Pharmaceutical Co. Ltd. Efficacy and safety study of TJCS for treatment of moderate to severe dry eye syndromes. Available from: https://clinicaltrials.gov/ct2/show/NCT02461719.

  105. Kawczyk-Krupka A, Bugaj AM, Potempa M, Wasilewska K, Latos W, Sieron A. Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: Clinical perspectives. Photodiagnosis Photodyn Ther. 2015;12(2):161-75.

  106. Wong TY, Ohno-Matsui K, Leveziel N, Holz FG, Lai TY, Yu HG, Lanzetta P, Chen Y, Tufail A. Myopic choroidal neovascularisation: Current concepts and update on clinical management. Br J Ophthalmol. 2015;99(3):289-96.

  107. Si JK, Tang K, Bi HS, Guo DD, Guo JG, Du YX, Cui Y, Pan XM, Wen Y, Wang XR. Combination of ranibizumab with photodynamic therapy vs. ranibizumab monotherapy in the treatment of age-related macular degeneration: A systematic review and meta-analysis of randomized controlled trials. Int J Ophthalmol. 2014;7(3):541.

  108. Nowak-Sliwinska P, Van Den Bergh H, Sickenberg M, Koh AH. Photodynamic therapy for polypoidal choroidal vasculopathy. Prog Retin Eye Res. 2013;37:182-99.

  109. Gao T, Qu J, Xiao J, Hu J, Zhao M. Photodynamic therapy for bullous retinal detachment: A single-center experience of case series with a 6-month follow-up study. Graefes Arch Clin Exp Ophthalmol. 2018;256(8):1429-39.

  110. Tsuchihashi T, Mori K, Ueyama K, Yoneya S. Five-year results of photodynamic therapy with verteporfin for Japanese patients with neovascular age-related macular degeneration. Clini Ophthalmol. 2013;7:615-20.

  111. U.S. Food & Drug Administration. FDA approves first treatment for thyroid eye disease. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-thyroid-eye-disease.

  112. U.S. Food & Drug Administration. FDA approves first drug for neurotrophic keratitis, a rare eye disease. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-drugneurotrophic-keratitis-rare-eye-disease.

  113. U.S. Food & Drug Administration. New drug therapy approvals 2019. Available from: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/new-drug-therapy-approvals-2019.

  114. Fu J, Campochiaro PA, Hanes JS, inventors; Johns Hopkins University, assignee. Non-linear multi-block copolymer-drug conjugates for the delivery of active agents. United States patent application US 16/182,261. 2019 Mar 7.

  115. Barman SP, Liu M, Barman K, Ward KL, Hackett B, inventors; Integral Biosystems LLC, assignee. Methods and biocompatible compositions to achieve sustained drug release in the eye. United States patent US 9,931,306. 2018 Apr 3.

  116. Venkatraman S, Natarajan JV, Howden T, Boey F, inventors; Nanyang Technological University, Singapore Health Services Pte Ltd, assignee. Stable liposomal formulations for ocular drug delivery. United States patent US 9,956,195. 2018 May 1.

  117. Mitra AK, Weiss SL. Topical aqueous nanomicellar, ophthalmic solutions and uses thereof. United States Patent US 3/975,175. 2015 Mar 17.

  118. Robinson MR, Blanda WM, Hughes PM, Ruiz G, Orilla WC, Whitcup SM, Welty DF, Lin JE, Spada LT, inventors; Allergan Inc., assignee. Intraocular drug delivery systems. United States patent US 8,969,415. 2015 Mar 3.

  119. Mitra AK, Velagaleti PR, Grau UM, inventors; Aurinia Pharmaceuticals Inc., assignee. Topical drug delivery systems for ophthalmic use. United States patent US 9,017,725. 2015 Apr 28.

  120. Fu J, Hanes J, Zack DJ, Yang Z, Welsbie DS, Berlinicke CA, inventors; Johns Hopkins University, assignee. Sunitinib formulations and methods for use thereof in treatment of glaucoma. United States patent US 10,525,034. 2020 Jan 7.

  121. Noronha G, Brooks CJ, Andino RV, Patel S, White D, inventors; CLEARSIDE BIOMEDICAL Inc., assignee. Methods and devices for treating posterior ocular disorders. United States patent application US 15/319,045. 2018 Feb 15.

  122. Perumal OP, Podaralla SK, Averineni RK, inventors. Polymer conjugated protein micelles. United States patent US 13/404,392. 2014 Apr 15.

  123. Uchegbu IF, Schatzlein AG, Hou X, inventors; London University College, assignee. Polymeric micellar clusters and their uses in formulating drugs. United States patent US 8,470,371. 2013 Jun 25.

  124. Clauson L, Ianchulev T, White N, Lilly RS, Newell M, Schaller M, inventors; Transcend Medical Inc, assignee. Targeted drug delivery devices and methods. United States patent application US 14/260,041. 2014 Oct 30.

  125. Shiah JG, Pujara C, inventors; Allergan Inc, assignee. Sustained drug delivery implant. United States patent US 9,610,246. 2017 Apr 4.

CITÉ PAR
  1. Hung Yuan-Pin, Chen Yu-Fon, Tsai Pei-Jane, Huang I-Hsiu, Ko Wen-Chien, Jan Jeng-Shiung, Advances in the Application of Nanomaterials as Treatments for Bacterial Infectious Diseases, Pharmaceutics, 13, 11, 2021. Crossref

  2. Allyn Megan M., Luo Richard H., Hellwarth Elle B., Swindle-Reilly Katelyn E., Considerations for Polymers Used in Ocular Drug Delivery, Frontiers in Medicine, 8, 2022. Crossref

  3. Zhang Rui, Yang Jingjing, Luo Qing, Shi Jieran, Xu Haohang, Zhang Junjie, Preparation and in vitro and in vivo evaluation of an isoliquiritigenin-loaded ophthalmic nanoemulsion for the treatment of corneal neovascularization, Drug Delivery, 29, 1, 2022. Crossref

  4. Liao Yukun, Jiang Huiting, Du Yangrui, Xiong Xiaojing, Zhang Yu, Du Zhiyu, Leung Man Fai, Using Convolutional Neural Network as a Statistical Algorithm to Explore the Therapeutic Effect of Insulin Liposomes on Corneal Inflammation, Computational Intelligence and Neuroscience, 2022, 2022. Crossref

  5. Zhang Chenchen, Yin Yuan, Zhao Jing, Li Yanxia, Wang Yuanping, Zhang Zhaoying, Niu Lingzhi, Zheng Yajuan, An Update on Novel Ocular Nanosystems with Possible Benefits in the Treatment of Corneal Neovascularization, International Journal of Nanomedicine, Volume 17, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain