Abonnement à la biblothèque: Guest
Special Topics & Reviews in Porous Media: An International Journal

Publication de 4  numéros par an

ISSN Imprimer: 2151-4798

ISSN En ligne: 2151-562X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.5 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00018 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.42 SJR: 0.217 SNIP: 0.362 CiteScore™:: 2.3 H-Index: 19

Indexed in

ADVANCES OF HEAT TRANSFER IN POROUS MEDIA−A REVIEW

Volume 11, Numéro 1, 2020, pp. 1-18
DOI: 10.1615/SpecialTopicsRevPorousMedia.2020028581
Get accessGet access

RÉSUMÉ

This study proposes to enhance the porous media heat and mass transfer inside thermal devices like heat exchangers, flat-plate solar air collectors, and other electronic equipment. These devices play an important role in industry today. The present study aims to conduct a comprehensive literature review on the porous media laminar and turbulent heat transfer, in the presence of turbulators with different geometries, placed in various manners, inside geometries of irregular shape. This represents a very important issue in the area of heat exchangers where the flow must be characterized; there is also a need to identify the velocity distribution, as well as the existence and the extension of possible recirculations.

RÉFÉRENCES
  1. Agarwal, S. and Bhadauria, B.S., Natural Convection in a Nanofluid Saturated Rotating Porous Layer with Thermal Non-Equilibrium Model, Transp. Porous Media, vol. 90, pp. 627-654,2011. DOI: 10.1007/s11242-011-9807-9.

  2. Akbarzadeh, M., Rashidi, S., Karimi, N., and Ellahi, R., Convection of Heat and Thermodynamic Irreversibilities in Two-Phase, Turbulent Nanofluid Flows in Solar Heaters by Corrugated Absorber Plates, Adv. Powder Technol., vol. 29, pp. 2243-2254, 2018. DOI: 10.1016/j.apt.2018.06.009.

  3. Akbarzadeh, M., Rashidi, S., Karimi, N., and Omar, N., First and Second Laws of Thermodynamics Analysis of Nanofluid Flow inside a Heat Exchanger Duct with Wavy Walls and a Porous Insert, J. Therm. Anal. Calorimetry, vol. 135, no. 1,pp. 177-194, 2018. DOI: 10.1007/s10973-018-7044-y.

  4. Alhussan, Kh., Assad, M.S., Penyazkov, O.G., and Sevruk, K.L., Formation of Detonation in a Pulse Combustion Chamber with a Porous Obstacle, J. Eng. Phys. Thermophys., vol. 85, no. 5, pp. 1052-1057,2012. DOI: 10.1007/s10891-012-0746-2.

  5. Alrubaye, A.J., Hasan, M., and Fattah, M.Y., Improving Geotechnical Characteristics of Kaolin Soil Using Silica Fume and Lime, Spec. Topics Rev. Porous Media, vol. 7, no. 1, pp. 77-85,2016. DOI: 10.1615/SpecialTopicsRevPorousMedia.v7.i1.70.

  6. Asadian, H., Zaretabar, M., Ganji, D.D., Gorji-Bandpy, M., and Sohrabi, S., Investigation of Heat Transfer in Rectangular Porous Fins (Si3N4) with Temperature-Dependent Internal Heat Generation by Galerkin's Method (GM) and Akbari-Ganji's Method (AGM), Int. J. Appl. Comput. Math. vol. 3, no. 4, pp. 2987-3000,2017. DOI: 10.1007/s40819-016-0279-z.

  7. Astanina, M.S., Sheremet, M.A., Oztop, H.F., and Abu-Hamdeh, N., Natural Convection in a Differentially Heated Enclosure Having Two Adherent Porous Blocks Saturated with a Nanofluid, Eur. Phys. J. Plus, vol. 132, pp. 509-518, 2017. DOI: 10.1140/epjp/i2017-11769-0.

  8. Bazdidi-Tehrani, F. and Naderi-Abadi, M., Numerical Analysis of Laminar Heat Transfer in Entrance Region of a Horizontal Channel with Transverse Fins, Int. Commun. Heat Mass Transf, vol. 31, no. 2, pp. 211-220,2004.

  9. Bejan, A., Dincer, I., Lorente, S., Miguel, A.F., and Reis, A.H., Porous and Complex Flow Structures in Modern Technologies, New York: Springer, 2004.

  10. Berner, C., Durst, F., and McEligot, D.M., Flow around Baffles, ASME J. Heat Transf., vol. 106, pp. 743-749,1984.

  11. Bhatti, M.M., Zeeshan, A., Ellahi, R., and Shit, G.C., Mathematical Modeling of Heat and Mass Transfer Effects on MHD Peristaltic Propulsion of Two-Phase Flow through a Darcy-Brinkman-Forchheimer Porous Medium, Adv. Powder Technol., vol. 29, pp. 1189-1197,2018. DOI: 10.1016/j.apt.2018.02.010.

  12. Biryukov, V.I. and Romakhin, S.S., Hydraulic Characteristics of Sprayers with Porous Elements, Russ. Eng. Res., vol. 28, no. 1, pp. 9-13,2008. DOI: 10.1007/s11980-008-1003-2.

  13. Chand,R. andRana, G.C.,ElectrothermoconvectionofRotatingNanofluidinBrinkmanPorous Medium, Spec. Topics Rev. Porous Media, vol. 7, no. 2, pp. 181-194,2016. DOI: 10.1615/SpecialTopicsRevPorousMedia.2016017035.

  14. Cheng, C.H. and Huang, W.H., Numerical Prediction for Laminar Forced Convection in Parallel-Plate Channels with Transverse Fin Arrays, Int. J. Heat Mass Transf., vol. 34, no. 11, pp. 2739-2749,1991.

  15. Cheng, P. and Minkowycz, W.J., Free Convection about a Vertical Flat Plate Embedded in a Saturated Porous Medium with Applications to Heat Transfer from a Dike, J. Geophys. Res, vol. 82, no. 14, pp. 2040-2044,1977. DOI: 10.1029/JB082i014p02040.

  16. Chen, T.S. and Yuh, C.F., Combined Heat and Mass Transfer in Mixed Convection along Vertical and Inclined Plates, Int. J. Heat Mass Transf, vol. 23, pp. 527-537,1980. DOI: 10.1016/0017-9310(80)90094-0.

  17. Chikh, S., Boumedien, A., Bouhadef, K., andLauriat, G., Analysis ofFluid Flow and Heat Transfer in a Channel with Intermittent Heated Porous Blocks, Heat Mass Transf., vol. 33, pp. 405-413,1998. DOI: 10.1007/s002310050208.

  18. Chiba, H., Ogushi, T., Ueno, S., and Nakajima, H., Effect of Pore Diameter Distribution on Heat Transfer Capacity of Lotus-Type Porous Copper Heat Sink for Air Cooling, Mater. Sci. Forum, vol. 658, pp. 220-223, 2010. DOI: 10.4028/www.scientific.net/MSF.658.220.

  19. Celik, H., Mobedi, M., Manca, O., and Ozkol, U., A Pore Scale Analysis for Determination of Interfacial Convective Heat Transfer Coefficient for Thin Periodic Porous Media under Mixed Convection, Int. J. Numer. Methods Heat Fluid Flow, vol. 27, no. 12, pp. 2775-2798,2017. DOI: 10.1108/HFF-01-2017-0036.

  20. Darvishi, M.T., Gorla, R.S.R., andKhani, F., Natural Convection and Radiation in Porous Fins, Int. J. Numer. Methods Heat Fluid Flow, vol. 23, no. 8, pp. 1406-1420,2013. DOI: 10.1108/HFF-12-2011-0264.

  21. Darvishi, M.T., Gorla, R.S.R., and Khani, F., Unsteady Thermal Response of a Porous Fin under the Influence of Natural Convection and Radiation, Heat Mass Transf, vol. 50, no. 9, pp. 1311-1317,2014. DOI: 10.1007/s00231-014-1341-1.

  22. Das, S., Chakraborty, S., Sensharma, A., and Jana, R.N., Entropy Generation Analysis for Magnetohydrodynamic Peristaltic Transport of Copper-Water Nanofluid in a Tube Filled with Porous Medium, Spec. Topics Rev. Porous Media, vol. 9, no. 3, pp. 217-238,2018. DOI: 10.1615/SpecialTopicsRevPorousMedia.v9.i3.20.

  23. Demartini, L.C., Vielmo, H.A., and Moller, S.V., Numeric and Experimental Analysis of the Turbulent Flow through a Channel with Baffle Plates, J. Braz. Soc. Mech. Sci. Eng., vol. 26, no. 2, pp. 153-159,2004.

  24. Du, D., Wang, C., Zhang, N., Wang, D., Zheng, S., Sun, R., and Li, Y., Experimental Study on the Pressure Distribution and Dynamic Propagation Behavior of CO2 Foam Flow in Heterogeneous Porous Media, Spec. Topics Rev. Porous Media, vol. 7, no. 4, pp. 357-363,2016. DOI: 10.1615/SpecialTopicsRevPorousMedia.2016016790.

  25. Ellahi, R., Alamri, S.Z., Basit, A., and Majeed, A., Effects of MHD and Slip on Heat Transfer Boundary Layer Flow over a Moving Plate based on Specific Entropy Generation, J. Taibah Univ. Sci., vol. 12, no. 4, pp. 476-482, 2018a. DOI: 10.1080/16583655.2018.1483795.

  26. Ellahi, R., Raza, M., and Akbar, N.S., Study of Peristaltic Flow of Nanofluid with Entropy Generation in a Porous Medium, J. Porous Media, vol. 20, no. 5, pp. 461-478,2017a. DOI: 10.1615/JPorMedia.v20.i5.70.

  27. Ellahi, R., Tariq, M.H., Hassan, M., and Vafai, K., On Boundary Layer Magnetic Flow of Nano-Ferroliquid under the Influence of Low Oscillating over Stretchable Rotating Disk, J. Mol. Liq., vol. 229, pp. 339-345,2017b. DOI: 10.1016/j.molliq.2016.12.073.

  28. Ellahi, R., Zeeshan, A., Shehzad, N., and Alamri, S.Z., Structural Impact of Kerosene-Al2O3 Nanoliquid on MHD Poiseuille Flow with Variable Thermal Conductivity: Application of Cooling Process, J. Mol. Liq., vol. 264, pp. 607-615, 2018b. DOI: 10.1016/j.molliq.2018.05.103.

  29. Esfahani, J.A., Akbarzadeh, M., Rashidi, S., Rosen, M.A., and Ellahi, R., Influences of Wavy Wall and Nanoparticles on Entropy Generation in a Plate Heat Exchanger, Int. J. Heat Mass Transf., vol. 109, pp. 1162-1171, 2017. DOI: 10.1016/j.ij heatmasstransfer.2017.03.006.

  30. Fateev, G.A., Silenkov, M.A., and Kim, K.J., Experimental Investigation of the Propagation of Heat Waves of Energy Conversion in Blown-Through Porous Media, J. Eng. Phys. Thermophys., vol. 73,no. 5,pp. 1069-1081,2000. DOI: 10.1007/BF02681602.

  31. Feng, S.S., Kim, T., and Lu, T.J., Numerical Investigation of Forced Convection in Pin/Plate-Fin Heat Sinks Heated by Impinging Jet Using Porous Medium Approach, Int. J. Numer. Methods Heat Fluid Flow, vol. 23, no. 1, pp. 88-107, 2013. DOI: 10.1108/09615531311289123.

  32. Fu, W.S. and Huang, H.C., Appropriate Sizes of Porous and Solid Blocks for Heat Transfer under an Impinging Jet, J. Chin. Inst. Eng., vol. 20, no. 2, pp. 159-169,1997. DOI: 10.1080/02533839.1997.9741818.

  33. Fu, W.S., Huang, H.C., and Liou, W.Y., Thermal Enhancement in Laminar Channel Flow with a Porous Block, Int. J. Heat Mass Transf., vol. 39, no. 10, pp. 2165-2175,1996. DOI: 10.1016/0017-9310(95)00208-1.

  34. Gebhart, B. and Pera, L., The Nature of Vertical Natural Convection Flows Resulting from the Combined Buoyancy Effects of Thermal and Mass Diffusion, Int. J. Heat Mass Transf., vol. 14, pp. 2025-2050,1971. DOI: 10.1016/0017-9310(71)90026-3.

  35. Girish, N., Makinde, O.D., and Sankar, M., Numerical Investigation of Developing Natural Convection in Vertical Double-Passage Porous Annuli, Defect Diffusion Forum, vol. 387, pp. 442-460,2018. DOI: 10.4028/www.scientific.net/DDF.387.442.

  36. Gorla, R.S.R. and Tornabene, R., Free Convection from a Vertical Plate with Nonuniform Surface Heat Flux and Embedded in a Porous Medium, Transp. Porous Media, vol. 3,no. 1,pp. 95-106,1988. DOI: 10.1007/BF00222688.

  37. Gorla, R.S.R. and Zinolabedini, A., Free Convection from a Vertical Plate with Nonuniform Surface Temperature and Embedded in a Porous Medium, Trans. ASME, J. Energy Resourc. Technol., vol. 109, no. 1, pp. 26-30,1987.

  38. Gortyshov, Y.F., Nadyrov, I.N., Ashikhmin, S.R., and Kunevich, A.P., Heat Transfer in the Flow of a Single-Phase and Boiling Coolant in a Channel with a Porous Insert, J. Eng. Phys, vol. 60, no. 2, pp. 202-207,1991. DOI: 10.1007/BF00873065.

  39. Guerroudj, N. and Kahalerras, H., Mixed Convection in a Channel Provided with Heated Porous Blocks of Various Shapes, Energy Convers. Manage, vol. 51, pp. 505-517,2010. DOI: 10.1016/j.enconman.2009.10.015.

  40. Guerroudj, N. and Kahalerras, H., Mixed Convection in an Inclined Channel with Heated Porous Blocks, Int. J. Numer. Methods Heat Fluid Flow, vol. 22,no. 7, pp. 839-861,2012. DOI: 10.1108/09615531211255743.

  41. Guo, Z. and Anand, N.K., Three-Dimensional Heat Transfer in a Channel with a Baffle in the Entrance Region, Numer. Heat Transf, Part A: Appl.: An Int. J. Comput. Methodol., vol. 31, pp. 21-35,1997.

  42. Habib, M.A., Attya, A.E., and McEligot, D.M., Calculation of Turbulent Flow and Heat Transfer in Channels with Streamwise- Periodic Flow, ASME J. Turbomachinery, vol. 110, pp. 405-411,1988.

  43. Habib, M.A., Mobarak, A.M., Sallak, M.A., Abdel Hadi, E.A., and Affify, R.I., Experimental Investigation of Heat Transfer and Flow over Baffles of Different Heights, ASME J. Heat Transf., vol. 116, pp. 363-368,1994.

  44. Habibi, K., Mosahebi, A., and Shokouhmand, H., Heat Transfer Characteristics of Reciprocating Flows in Channels Partially Filled with Porous Medium, Transp. Porous Media, vol. 89,pp. 139-153,2011. DOI: 10.1007/s11242-011-9759-0.

  45. Hamdan, M. and Al-Nimr, M.A., The Use of Porous Fins for Heat Transfer Augmentation in Parallel-Plate Channels, Transp. Porous Media, vol. 84, pp. 409-420,2010. DOI: 10.1007/s11242-009-9510-2.

  46. Hassan, M., Zeeshan, A., Majeed, A., and Ellahi, R., Particle Shape Effects on Ferrofuids Flow and Heat Transfer under Influence of Low Oscillating Magnetic Field, J Magn. Magn. Mater., vol. 443, pp. 36-44,2017. DOI: 10.1016/j.jmmm.2017.07.024.

  47. Hong, Y.J. and Hsieh, S.S., An Experimental Investigation of Heat Transfer Characteristics for Turbulent Flow over Staggered Ribs in a Square Duct, Exp. Therm. FluidSci., vol. 4, pp. 714-722,1991.

  48. Huang, P.C. and Vafai, K., Internal Heat Transfer Augmentation in a Channel Using an Alternate Set of Porous Cavity-Block Obstacles, Numer. Heat Transf, Part A: Appl., vol. 25, no. 5, pp. 519-539,1994. DOI: 10.1080/10407789408955964.

  49. Ijaz, N., Zeeshan, A., Bhatti, M.M., and Ellahi, R., Analytical Study on Liquid-Solid Particles Interaction in the Presence of Heat and Mass Transfer through a Wavy Channel, J. Mol. Liq., vol. 250, pp. 80-87,2018. DOI: 10.1016/j.molliq.2017.11.123.

  50. Ingham,D.B. and Pop, I., Transport Phenomena in Porous Media, Oxford, UK: Pergamon, 1998, vol. II, 2002.

  51. Jamarani, A., Maerefat, M., Jouybari, N.F., and Nimvari, M.E., Thermal Performance Evaluation of a Double-Tube Heat Exchanger Partially Filled with Porous Media under Turbulent Flow Regime, Transp. Porous Media, vol. 120, no. 3, pp. 449-471, 2017. DOI: 10.1007/s11242-017-0933-x.

  52. Juan, D. and Hai-Tao, Z., Numerical Simulation of a Plate-Fin Heat Exchanger with Offset Fins Using Porous Media Approach, Heat Mass Transf., vol. 54, no. 3, pp. 745-755,2018. DOI: 10.1007/s00231-017-2168-3.

  53. Kahalerras, H. and Targui, N., Numerical Analysis of Heat Transfer Enhancement in a Double Pipe Heat Exchanger with Porous Fins, Int. J Numer. Methods Heat Fluid Flow, vol. 18, no. 5, pp. 593-617,2008. DOI: 10.1108/09615530810879738.

  54. Kelkar, K.M. and Patankar, S.V., Numerical Prediction of Flow and Heat Transfer in a Parallel Plate Channel with Staggered Fins, ASME J. Heat Transf., vol. 109, pp. 25-30,1987.

  55. Khan, J.A., Hinton, J., and Baxter, S.C., Enhancement of Heat Transfer with Inclined Baffles and Ribs Combined, Enhanced Heat Transf., vol. 9, nos. 3-4, pp. 137-151,2002. DOI: 10.1080/10655130215738.

  56. Kim, T.K., Three-Dimensional Estimation of Thermal and Pressure Drop Performance of Louvered-Fin Tube Heat Exchanger Using Porous Medium Approach Considering Inertia Effect, J. Mech. Sci. Technol., vol. 31, no. 8, pp. 4011-4017, 2017. DOI: 10.1007/s12206-017-0748-2.

  57. Kirsanov, Y.A., Nazipov, R.A., and Ivanova, E.I., A Technique for Thermal Design of a Heat Exchanger with Porous Inserts, Russ. Aeronautics (Iz. VUZ), vol. 56, no. 1, pp. 73-82,2013. DOI: 10.3103/S106879981301011X.

  58. Ko, K.H. and Anand, N.K., Use of Porous Baffles to Enhance Heat Transfer in a Rectangular Channel, Int. J. Heat Mass Transf., vol. 46, no. 22, pp. 4191-4199,2003. DOI: 10.1016/S0017-9310(03)00251-5.

  59. Konstantakou, M., Steriotis, Th.A., Kikkinides, E.S., and Stubos, A.K., Monte Carlo Simulations of CO2 Sorption in Nanoporous Carbons, Spec. Topics Rev. Porous Media, vol. 1, no. 3, pp. 205-213, 2010. DOI: 10.1615/SpecialTopicsRevPorousMedia.v1.i3.20.

  60. Kumari, M., Pop, I., and Nath, G., Finite Difference and Improved Perturbation Solutions for Free Convection on a Vertical Cylinder Embedded in a Saturated Porous Medium, Int. J. Heat Mass Transf., vol. 28, pp. 2171-2174,1985. DOI: 0.1016/0017-9310(85)90112-7.

  61. Kumar, T.S. and Kumar, B.R., Magnetohydrodynamic Nanofluid Flow and Heat Transfer over a Stretching Sheet, Spec. Topics Rev. Porous Media, vol. 9, no. 4, pp. 365-378,2018. DOI: 10.1615/SpecialTopicsRevPorousMedia.2018022792.

  62. Lai, F. C., Coupled Heat and Mass Transfer by Mixed Convection from a Vertical Plate in a Saturated Porous Medium, Int. Commun. Heat Mass Transf., vol. 18, pp. 93-106,1991. DOI: 10.1016/0735-1933(91)90011-R.

  63. Lee, W.H., Kim, K.W., Lee, J.H., Yoon, J.H., Kwak, M.K., and Park, C.W., Visualized Flow Structure inside an Odor-Removing Basin System with Multi-Stacked Porous Baffles, Appl. Mech. Mater., vols. 752-753, pp. 908-912, 2015. DOI: 10.4028/www. scientific.net/AMM.752-753.908.

  64. Li, H. and Kottke, V., Effect of Baffle Spacing on Pressure Drop and Local Heat Transfer in Staggered Tube Arrangement, Int. J. Heat Mass Transf., vol. 41, pp. 1303-1311,1998.

  65. Li, H.Y., Leong, K.C., Jin, L.W., and Chai, J.C., Analysis of Fluid Flow and Heat Transfer in a Channel with Staggered Porous Blocks, Int. J. Therm. Sci, vol. 49, no. 6, pp. 950-962,2010. DOI: 10.1016/j.ijthermalsci.2010.01.006.

  66. Li, J., Song,H., Zhu, W.Y., andMeng, W., Experiments and Numerical Model of Oil-Chemical Agent Two-Phase Flow with Thermal Stability Effect at High Temperature, Spec. Topics Rev. Porous Media, vol. 7, no. 4, pp. 365-372,2016. DOI: 10.1615/SpecialTopicsRevPorousMedia.2016017135.

  67. Li, P., Fan, X., and Chen, Z., Numerical Study on the Heat Transfer of Micro Elliptic Pin Fins in a Rectangular Mini Channel, Numer. Heat Transf., Part A, vol. 70,no. 11,pp. 1242-1252,2016. DOI: 10.1080/10407782.2016.1230430.

  68. Liu, X., Wang, J., Ge, L., Hub, F., Li, C., Li, X., Yu, J., Xu, H., Lu, S., and Xue, Q., Pore-Scale Characterization of Tight Sandstone in Yanchang Formation Ordos Basin China Using Micro-CT and SEM Imaging from nm- to cm-Scale, Fuel, vol. 209, pp. 254.

  69. Logesh, K., Arunraj, R., Govindan, S., Thangaraj, M., and Yuvashree, G.K., Numerical Investigation on Possibility of Heat Transfer Enhancement Using Reduced Weight Fin Configuration, Int. J. Ambient Energy, vol. 41, no. 2, pp. 142-145, 2020. DOI: 10.1080/01430750.2018.1451382.

  70. Lopez, J.R., Anand, N.K., and Fletcher, L.S., Heat Transfer in a Three-Dimensional Channel with Baffles, Numer. Heat Transf., Part A: Appl.: An Int. J. Comput. Method, vol. 30, pp. 189-205,1996.

  71. Mahdy, A., Mansour, M.A., Ahmed, S.E., and Mohamed, S.S., Entropy Generation of Cu-Water Nanofluids through Non-Darcy Porous Medium over a Cone with Convective Boundary Condition and Viscous Dissipation Effects, Spec. Topics Reviews Porous Media, vol. 8, no. 1,pp. 59-72,2017. DOI: 10.1615/SpecialTopicsRevPorousMedia.v8.i1.50.

  72. Mansour, M.A., Ahmed, S.E., and Bakier, M.A.Y., Free Convection in H-Shaped Enclosures Filled with a Porous Medium Saturated with Nanofluids with Mounted Heaters on the Vertical Walls, Spec. Topics Rev. Porous Media, vol. 4, no. 4, pp. 287-297, 2013. DOI: 10.1615/SpecialTopicsRevPorousMedia.v4.i4.10.

  73. Mesgarpour, M., Heydari, A., and Saddodin, S., Investigating the Effect of Connection Type of a Sintered Porous Fin through a Channel on Heat Transfer and Fluid Flow, J. Therm. Anal. Calorimetry, vol. 135, no. 1, pp. 461-474, 2019. DOI: 10.1007/s10973-018-7356-y.

  74. Minkowycz, W.J. and Cheng, P., Free Convection about a Vertical Cylinder Embedded in a Porous Medium, Int. J. Heat Mass Transf., vol. 19, no. 7, pp. 805-813,1976. DOI: 10.1016/0017-9310(76)90135-6.

  75. Minkowycz, W. J., Cheng, P., and Chang, C.H., Mixed Convection about aNonisothermal Cylinder and Sphere in a Porous Medium, Numer. Heat Transf., vol. 8, no. 3, pp. 349-359,1985. DOI: 10.1080/01495728508961859.

  76. Miranda, B.M.D.S. and Anand, N.K., Convective Heat Transfer in a Channel with Porous Baffles, Numer. Heat Transf., Part A: Appl., vol. 46, no. 5, pp. 425-452,2004. DOI: 10.1080/10407780490478515.

  77. Moghaddam, R.N., Rostami, B., and Pourafshary, P.A., Method for Dissolution Rate Quantification of Convection-Diffusion Mechanism during CO2 Storage in Saline Aquifers, Spec. Topics Rev. Porous Media, vol. 4, no. 1, pp. 13-21, 2013. DOI: 10.1615/SpecialTopicsRevPorousMedia.v4.i1.20.

  78. Mohammadi, K., Heidemann, W., and Muller-Steinhagen, H., Numerical Investigation of the Effect of Baffle Orientation on Heat Transfer and Pressure Drop in a Shell and Tube Heat Exchanger with Leakage Flows, Heat Transf. Eng., vol. 30, no. 14, pp. 1123-1135,2009. DOI: 10.1080/01457630902972694.

  79. Mohammadi Pirouz, M., Farhadi, M., Sedighi, K., Nemati, H., and Fattahi, E., Lattice Boltzmann Simulation of Conjugate Heat Transfer in a Rectangular Channel with Wall-Mounted Obstacles, Sci. Iran. B, vol. 18, no. 2, pp. 213-221,2011.

  80. Mokhtari, M., Gerdroodbary, M.B., Yeganeh, R., and Fallah, K., Numerical Study of Mixed Convection Heat Transfer of Various Fin Arrangements in a Horizontal Channel, Eng. Sci. Technol, Int. J., vol. 20, pp. 1106-1114,2017.

  81. Moradi, A., Fallah, A.P.M., Hayat, T., and Aldossary, O.M., On Solution of Natural Convection and Radiation Heat Transfer Problem in a Moving Porous Fin, Arab. J. Sci. Eng., vol. 39, pp. 1303-1312,2014. DOI: 10.1007/s13369-013-0708-9.

  82. Mousavi, S.S. and Hooman, K., Heat and Fluid Flow in Entrance Region of a Channel with Staggered Baffles, Energy Convers. Manage, vol. 47, no. 15, pp. 2011-2019,2006.

  83. Nasiri, M. and Jafari, I., Investigation of the Effect of Nanoclay on XANTHAN-Cr (iii) Nanocomposite Gel Structure and Stability, Spec. Topics Rev Porous Media, vol. 8, no. 1,pp. 49-57,2017. DOI: 10.1615/SpecialTopicsRevPorousMedia.v8.i1.40.

  84. Nield, D.A. and Bejan, A., Convection in Porous Media, 2nd ed., New York, NY: Springer, 2006.

  85. Panchal, H., Sadasivuni, K.K., Suresh, M., Yadav, S., and Brahmbhatt, S., Performance Analysis of Evacuated Tubes Coupled Solar Still with Double Basin Solar Still and Solid Fins, Int. J Ambient Energy, 2018. DOI: 10.1080/01430750.2018.1501745.

  86. Patankar, S.V., Liu, C.H., and Sparrow, E.M., Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area, ASMEJ. Heat Transf., vol. 99, pp. 180-186,1977.

  87. Patel, T. and Meher, R., Adomian Decomposition Sumudu Transform Method for Solving a Solid and Porous Fin with Temperature Dependent Internal Heat Generation, Springer Plus, vol. 5, pp. 489-506,2016. DOI: 10.1186/s40064-016-2106-8.

  88. Pera, L. and Gebhart, B., Natural Convection Boundary Layer Flow over Horizontal and Slightly Inclined Surfaces, Int. J. Heat Mass Transf, vol. 16, pp. 1131-1136,1972. DOI: 10.1016/0017-9310(73)90126-9.

  89. Pop, I. and Ingham, D.B., Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media, Oxford, UK: Pergamon, 2001.

  90. Rad, S.E., Afshin, H., and Farhanieh, B., Heat Transfer Enhancement in Shell-and-Tube Heat Exchangers Using Porous Media, Heat Transf. Eng., vol. 36, no. 3, pp. 262-277,2015.

  91. Ramana, P.V., Narasimhan, A., and Chatterjee, D., Experimental Investigation of the Effect of Tube-to-Tube Porous Medium Interconnectors on the Thermohydraulics of Confined Tube Banks, Heat Transf. Eng., vol. 31, no. 6, pp. 518-526, 2010. DOI: 10.1080/01457630903412161.

  92. Ranganathan, P. and Viskanta, R., Mixed Convection Boundary Layer Flow along a Vertical Surface in a Porous Medium, Numer. Heat Transf, vol. 7, no. 3, pp. 305-317,1984. DOI: 10.1016/S0997-7546(03)00059-1.

  93. Rashidi, S., Esfahani, J.A., and Ellahi, R., Convective Heat Transfer and Particle Motion in an Obstructed Duct with Two Side-by-Side Obstacles by Means of DPM Model, Appl. Sci, vol. 7, pp. 431-444,2017. DOI: 10.3390/app7040431.

  94. Reddy, K.S. and Satyanarayana, G.V., Numerical Study of Porous Finned Receiver for Solar Parabolic Trough Concentrator, Eng. Appl. Comput. FluidMech., vol. 2,no. 2,pp. 172-184,2008. DOI: 10.1080/19942060.2008.11015219.

  95. Reddy, P.C., Raju, M.C., and Raju, G.S.S., Free Convective Heat and Mass Transfer Flow of Heat-Generating Nanofluid past a Vertical Moving Porous Plate in a Conducting Field, Spec. Topics Rev. Porous Media, vol. 7, no. 2, pp. 161-180, 2016. DOI: 10.1615/SpecialTopicsRevPorousMedia.2016016973.

  96. Rees, D.A.S. and Nield, D.A., The Effect of an Embedded Solid Block on the Onset of Convection in a Porous Cavity, Int. J. Numer. Methods Heat Fluid Flow, vol. 26, nos. 3-4,pp. 950-976,2016. DOI: 10.1108/HFF-07-2015-0287.

  97. Reich, L., Bader, R., Simon, T.W., and Lipinski, W., Thermal Transport Model of a Packed-Bed Reactor for Solar Thermochemical CO2 Capture, Spec. Topics Rev. Porous Media, vol. 6, no. 2, pp. 197-209,2015. DOI: 10.1615/.2015012344.

  98. Rokhforouz, M.R., Rabbani, A., Ayatollahi, S., and Taghikhani, V., Numerical Analysis of Heat Conduction Treated with Highly Conductive Copper Oxide Nanoparticles in Porous Media, Spec. Topics Rev. Porous Media, vol. 7, no. 2, pp. 149-160, 2016. DOI: 10.1615/SpecialTopicsRevPorousMedia.2016017291.

  99. Renxing, L., Akira, N., and Xiaolan, H., Determination of Forchheimer Term in Porous Media Consisting of Obstacles of Different Sizes, Adv. Mater. Res, vols. 594-597, pp. 2537-2540,2012. DOI: 10.4028/www.scientific.net/AMR.594-597.2537.

  100. Saedodin, S. and Shahbabaei, M., Thermal Analysis of Natural Convection in Porous Fins with Homotopy Perturbation Method (HPM), Arab JSci Eng., vol. 38, pp. 2227-2231,2013. DOI: 10.1007/s13369-013-0581-6.

  101. Santos, N.B. and de Lemos, M.J.S., Flow and Heat Transfer in a Parallel-Plate Channel with Porous and Solid Baffles, Numer. Heat Transf., Part A: Appl., vol. 49, no. 5, pp. 471-494,2006. DOI: 10.1080/10407780500325001.

  102. Sarkar, B.C., Jana, R.N., and Das, S., Magnetohydrodynamic Peristaltic Flow of Nanofluids in a Vertical Asymmetric Channel Filled with Porous Medium in Presence of Thermal Radiation, Spec. Topics Rev. Porous Media, vol. 6, no. 4, pp. 313-331, 2015. DOI: 10.1615/SpecialTopicsRevPorousMedia.v6.i4.10.

  103. Sergeev, S.P., Dil'man, V. V., and Genkin, V.S., Distribution of Streams in Channels with Porous Walls, J. Eng. Phys, vol. 27, no. 4, pp. 1180-1185,1974. DOI: 10.1007/BF00864011.

  104. Shamsabadi, H., Rashidi, S., and Esfahani, J.A., Entropy Generation Analysis for Nanofluid Flow inside a Duct Equipped with Porous Baffles, J. Therm. Anal. Calorimetry, vol. 135,no.2,pp. 1009-1019,2019. DOI: 10.1007/s10973-018-7350-4.

  105. Shirvan, K.M., Ellahi, R., Mamourian, M., and Moghiman, M., Effect of Wavy Surface Characteristics on Heat Transfer in a Wavy Square Cavity Filled with Nanofluid, Int. J. Heat Mass Transf., vol. 107, pp. 1110-1118, 2017a. DOI: 10.1016/j.ij heatmasstransfer.2016.11.022.

  106. Shirvan, K.M., Ellahi, R., Mirzakhanlari, S., and Mamourian, M., Enhancement of Heat Transfer and Heat Exchanger Effectiveness in a Double Pipe Heat Exchanger Filled with Porous Media: Numerical Simulation and Sensitivity Analysis of Turbulent Fluid Flow, Appl. Therm. Eng., vol. 109,pp. 761-774,2016. DOI: 10.1016/j.applthermaleng.2016.08.116.

  107. Shirvan, K.M., Mamourian, M., Mirzakhanlari, S., and Ellahi, R., Numerical Investigation of Heat Exchanger Effectiveness in a Double Pipe Heat Exchanger Filled with Nanofluid: A Sensitivity Analysis by Response Surface Methodology, Power Technol., vol. 313, pp. 99-111,2017b. DOI: 10.1016/j.powtec.2017.02.065.

  108. Shirvan, K.M., Mamourian, M., Mirzakhanlari, S., Ellahi, R., and Vafai, K., Numerical Investigation and Sensitivity Analysis of Effective Parameters on Combined Heat Transfer Performance in a Porous Solar Cavity Receiver by Response Surface Methodology, Int. J. Heat Mass Transf, vol. 105, pp. 811-825,2017c. DOI: 10.1016/j.ijheatmasstransfer.2016.10.008.

  109. Shuja, S.Z. and Yilbas, B.S., Flow over Rectangular Porous Block in a Fixed Width Channel: Influence of Porosity and Aspect Ratio, Int. J. Comput. FluidDyn., vol. 21, nos. 7-8, pp. 297-305,2007. DOI: 10.1080/10618560701624518.

  110. Shuja, S.Z., Yilbas, B.S., and Jamal, A., Entropy Generation in Flow Field Subjected to a Porous Block in a Vertical Channel, Transp. PorousMedia, vol. 72, pp. 179-197,2008. DOI: 10.1007/s11242-007-9143-2.

  111. Shuja, S.Z., Yilbas, B.S., and Kassas, M., Entropy Generation in a Square Cavity: Effect of Porous Block Configurations in Relation to Cooling Applications, Int. J. Numer. Methods Heat Fluid Flow, vol. 20, no. 3, pp. 332-347, 2010. DOI: 10.1108/09615531011024075.

  112. Siavashi, M., Reza, H., Bahrami, T., and Safari, H., Numerical Investigation of Porous Rib Arrangement on Heat Transfer and Entropy Generation of Nanofluid Flow in an Annulus Using a Two-Phase Mixture Model, Numer. Heat Transf., Part A: Appl, vol. 71, no. 12, pp. 1251-1273,2017. DOI: 10.1080/10407782.2017.1345270.

  113. Taghiyari, H.R., Ghorbani, M., and Kalantari, A., Effects of Silver and Copper Nanoparticles on Gas and Liquid Permeability of Heat-Treated Solid Woods, Spec. Topics Rev. Porous Media, vol. 4, no. 1, pp. 81-97, 2013. DOI: 10.1615/SpecialTopic-sRevPorousMedia.v4.i1.80.

  114. Targui, N. and Kahalerras, H., Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Pulsating Flow, Energy Convers. Manage, vol. 76, pp. 43-54,2013. DOI: 10.1016/j.enconman.2013.07.022.

  115. Torii, S., Yang, W. J., and Umeda, S., Flow over a Slot-Perforated Flat Surface between Two Parallel Plates, Int. J. Numer. Methods Heat Fluid Flow, vol. 9, no. 2, pp. 136-150,1999. DOI: 10.1108/09615539910256009.

  116. Toghraie, D., Mahmoudi, M., Akbari, O.A., Pourfattah, F., and Heydari, M., The Effect of Using Water/CuO Nanofluid and L-Shaped Porous Ribs on the Performance Evaluation Criterion of Microchannels, J. Therm. Anal. Calorimetry, vol. 135, no. 1, pp. 145-159,2019. DOI: 10.1007/s10973-018-7254-3.

  117. Tsay, Y.L., Cheng, J.C., and Chang, T.S., Enhancement of Heat Transfer from Surface-Mounted Block Heat Sources in a Duct with Baffles, Numer. Heat Transf. A, vol. 43, no. 8, pp. 827-841,2003. DOI: 10.1080/713838151.

  118. Tzeng, S.C., Ma, W.P., and Wang, Y.C., Friction and Forced Convective Heat Transfer in a Sintered Porous Channel with Obstacle Blocks, Heat Mass Transf., vol. 43, pp. 687-697,2007. DOI: 10.1007/s00231-006-0149-z.

  119. Umavathi, J.C., Chamkha, A.J., and Mohite, M.B., Convective Transport in a Nanofluid Saturated Porous Layer with Cross Diffusion and Variation of Viscosity and Conductivity, Spec. Topics Rev. Porous Media, vol. 6, no. 1, pp. 11-27, 2015. DOI: 10.1615/SpecialTopicsRevPorousMedia.v6.i1.20.

  120. Vafai, K., Handbook of Porous Media, 2nd ed., New York, NY: Taylor & Francis, 2005.

  121. Varol, S.S., Yucel, N., and Turkoglu, H., Laminar Flow and Mass Transfer in Channels with a Porous Bottom Wall and with Fins Attached to the Top Wall, Heat Mass Transf., vol. 36, pp. 103-108,2000. DOI: 10.1007/s002310050371.

  122. Vaszi, A.Z., Elliott, L., Ingham, D.B., and Pop, I., Conjugate Free Convection from Vertical Fins Embedded in a Porous Medium, Numer. Heat Transf., Part A: Appl., vol. 44, no. 7, pp. 743-770,2003. DOI: 10.1080/716100521.

  123. Wang, C.Y., Analytical Solution for Forced Convection in a Semi-Circular Channel Filled with a Porous Medium, Transp. Porous Media, vol. 73, pp. 369-378,2008. DOI: 10.1007/s11242-007-9177-5.

  124. Wang, Z.Z., Wei, D., and Hong, F., Experimental Study of Condensation Heat Transfer Promotion on a Fluted Tube with Thin Porous Coatings, Heat Transf. Eng., vol. 21, no. 4, pp. 46-52,2000. DOI: 10.1080/01457630050144497.

  125. Webb, B.W. and Ramadhyani, S., Conjugate Heat Transfer in a Channel with Staggered Ribs, Int. J. Heat Mass Transf., vol. 28, pp. 1679-1687,1985.

  126. Wen-Yong, G., Lin-Gen, C., and Yu, C., Study on the Optimization of Absorption Baffle with Coating Material, Adv. Mater. Res, vol. 644, pp. 165-170,2013. DOI: 10.4028/www.scientific.net/AMR.644.165.

  127. Xu, H., Convective Heat Transfer in a Porous-Medium Micro-Annulus with Effects of the Boundary Slip and the Heat-Flux Asymmetry: An Exact Solution, Int. J. Therm. Sci., vol. 120, pp. 337-353,2017a. DOI: 10.1016/j.ijthermalsci.2017.06.021.

  128. Xu, H., Performance Evaluation of Multi-Layered Porous-Medium Micro Heat Exchangers with Effects of Slip Condition and Thermal Non-Equilibrium, Appl. Therm. Eng., vol. 116, pp. 516-527,2017b. DOI: 10.1016/j.applthermaleng.2016.12.090.

  129. Xu, H., Zhao, C., and Vafai, K., Analysis of Double Slip Model for a Partially Filled Porous Microchannel: An Exact Solution, Eur. J. Mech. B-Fluids, vol. 68, pp. 1-9,2018a. DOI: 10.1016/j.euromechflu.2017.10.009.

  130. Xu, H., Zhao, C., and Vafai, K., Analytical Study of Flow and Heat Transfer in an Annular Porous Medium Subject to Asymmetrical Heat Fluxes, Heat Mass Transf, vol. 53, no. 8, pp. 2663-2676,2017. DOI: 10.1007/s00231-017-2011-x.

  131. Xu, Z.G., Qin, J., Zhou, X., and Xu, H.J., Forced Convective Heat Transfer of Tubes Sintered with Partially-Filled Gradient Metal Foams (GMFs) Considering Local Thermal Non-Equilibrium Effect, Appl. Therm. Eng., vol. 137, pp. 101-111,2018b. DOI: 10.1016/j. applthermaleng .2018.03.074.

  132. Yang, Y.T. and Hwang, C.W., Numerical Calculations of Heat Transfer and Friction Characteristics in Rectangular Ducts with Slit and Solid Ribs Mounted on One Wall, Numer. Heat Transf, Part A: Appl., vol. 45, no. 4, pp. 363-375, 2004. DOI: 10.1080/1040780390244452.

  133. Yang, Y.T. and Hwang, C.Z., Calculation of Turbulent Flow and Heat Transfer in a Porous-Baffled Channel, Int. J. Heat Mass Transf., vol. 46, no. 5, pp. 771-780,2003. DOI: 10.1016/S0017-9310(02)00360-5.

  134. Yang, Y.T., Tsai, K.T., Tang, H.W., and Chung, S.E., Numerical Simulations and Optimization of Porous Pin Fins in a Rectangular Channel, Numer. Heat Transf., Part A: Appl., vol. 70, no. 7, pp. 1-18,2016. DOI: 10.1080/10407782.2016.1214479.

  135. Yih, K.A., The Effect of Uniform Suction/Blowing on Heat Transfer of Magnetohydrodynamic Hiemenz Flow through Porous Media, Acta Mech., vol. 130, pp. 147-158,1998. DOI: 10.1007/BF01184307.

  136. Yilmaz, M., The Effect of Inlet Flow Baffles on Heat Transfer, Int. Commun. Heat Mass Transf., vol. 30, no. 8, pp. 1169-1178, 2003. DOI: 10.1016/S0735-1933(03)00182-9.

  137. Yuan, Y., Cheng, A., Yang, D., and Li, C., Numerical Simulation Method, Theory, and Application of Three-Phase (Oil, Gas, Water) Chemical-Agent Oil Recovery in Porous Media, Spec. Topics Rev. Porous Media, vol. 7, no. 3, pp. 245-272, 2016. DOI: 10.1615/SpecialTopicsRevPorousMedia.v7.i3.30.

  138. Yuan, Z.X., Tao, W.Q., and Wang, Q.W., Numerical Prediction for Laminar Forced Convection Heat Transfer in Parallel-Plate Channels with Streamwise-Periodic Rod Disturbances, Int. J. Numer. Methods Fluids, vol. 28, pp. 1371-1387,1998.

  139. Yucel, N. and Guven, R.T., Forced-Convection Cooling Enhancement of Heated Elements in a Parallel-Plate Channels Using Porous Inserts, Numer. Heat Transf, Part A: Appl, vol. 51, no. 3, pp. 293-312,2007. DOI: 10.1080/10407780600762533.

  140. Yucel, N. and Guven, R.T., Numerical Study of Heat Transfer in a Rectangular Channel with Porous Covering Obstacles, Transp. Porous Media, vol. 77, pp. 41-58,2009. DOI: 10.1007/s11242-008-9260-6.

  141. Zapryagaev, V.I., Kavun, I.N., and Solotchin, A.V., Flow Structure Formed due to Interaction of a Supersonic Jet with a Porous Obstacle, J. Appl. Mech. Tech. Phys., vol. 56, no. 3, pp. 406-413,2015. DOI: 10.1134/S0021894415030098.

  142. Zeeshan, A., Shehzad, N., and Ellahi, R., Analysis of Activation Energy in Couette-Poiseuille Flow of Nanofluid in the Presence of Chemical Reaction and Convective Boundary Conditions, Results Phys., vol. 8, pp. 502-512, 2018. DOI: 10.1016/j.rinp.2017.12.024.

  143. Zhang, H.J., Zou, Z.P., Shao, F., and Song, S.H., Investigations of Heat Transfer Enhancement in a Channel with Staggered Porous Ribs by the Preconditioned Density-Based Algorithm, Numer. Heat Transf., Part A: Appl, vol. 67, no. 12, pp. 1370-1385,2015. DOI: 10.1080/10407782.2014.965105.

CITÉ PAR
  1. Pattnaik P. K., Mishra S. R., Sharma Ram Prakash, Numerical Simulation for Flow Through Conducting Metal and Metallic Oxide Nanofluids, Journal of Nanofluids, 9, 4, 2020. Crossref

  2. Singha A. K., Seth G. S., Bhattacharyya Krishnendu, Yadav Dhananjay, Verma Ajeet Kumar, Gautam Anil Kumar, Soret and Dufour Effects on Hydromagnetic Flow of H2O-Based Nanofluids Induced by an Exponentially Expanding Sheet Saturated in a Non-Darcian Porous Medium, Journal of Nanofluids, 10, 4, 2021. Crossref

  3. Ahmad Iftikhar, Qureshi Naveed, Al-Khaled Kamel, Aziz Samaira, Chammam Wathek, Ullah Khan Sami, Magnetohydrodynamic Time Dependent 3-D Simulations for Casson Nano-Material Configured by Unsteady Stretched Surface with Thermal Radiation and Chemical Reaction Aspects, Journal of Nanofluids, 10, 2, 2021. Crossref

  4. Ahmad Shafiq, Nadeem Sohail, Rehman Aysha, Mathematical Analysis of Thermal Energy Distribution in a Hybridized Mixed Convective Flow, Journal of Nanofluids, 10, 2, 2021. Crossref

  5. Zolfagharnasab Mohammad Hossein, Salimi Milad, Aghanajafi Cyrus, Application of non-pressure-based coupled procedures for the solution of heat and mass transfer for the incompressible fluid flow phenomenon, International Journal of Heat and Mass Transfer, 181, 2021. Crossref

  6. Mishra S. R., Sharma Ram Prakash, Tinker Seema, Panda G. K., Impact of Slip and the Entropy Generation in a Darcy-Forchhimer Nanofluid Past a Curved Stretching Sheet with Heterogeneous and Homogenous Chemical Reactions, Journal of Nanofluids, 11, 1, 2022. Crossref

  7. Gangadhar K., Lakshmi K. Bhanu, Kannan T., Chamkha Ali J., Stefan blowing on chemically reactive nano-fluid flow containing gyrotactic microorganisms with leading edge accretion (or) ablation and thermal radiation, Indian Journal of Physics, 96, 10, 2022. Crossref

  8. Sharma Ram Prakash, Mishra S. R., Tinker Seema, Kulshrestha B. K., Effect of Non-linear Thermal Radiation and Binary Chemical Reaction on the Williamson Nanofluid Flow Past a Linearly Stretching Sheet, International Journal of Applied and Computational Mathematics, 8, 4, 2022. Crossref

  9. Soloveva O V, Solovev S A, Shakurova R Z, Murzaev A S, Gilyazov A I, Golubev Y P, Experimental study of pressure drop in porous structures created on the basis of Kelvin cells, IOP Conference Series: Earth and Environmental Science, 1076, 1, 2022. Crossref

Prochains articles

HYDROMAGNETIC CASSON FLUID FLOW ACROSS AN INCLINED VERTICAL SURFACE IN POROUS CHANNEL WITH BUOYANCY AND THERMO-DIFFUSION EFFECTS Sowmiya C, Rushi Kumar B Effect of Helical Force on Thermal Convection of a Ferrofluid: A Weakly Non-linear Theory Jagathpally Sharathkumar Reddy, Kishan N, Shiva Kumar Reddy G, Ravi Ragoju STABILITY ANALYSIS OF A COUPLE-STRESS FLUID WITH VARIABLE GRAVITY IN A POROUS MEDIUM FOR DIFFERENT CONDUCTING BOUNDARIES Shalu Choudhary, Reeta Devi, Amit Mahajan, Sunil Sunil CREEPING FLOW ABOUT A TAINTED LIQUID DROP WITH A MICROPOLAR FLUID AND ALIGNED IN A POROUS MEDIUM FILLED WITH VISCOUS FLUID UTILISING SLIP PHANI KUMAR MEDURI, VIJAYA LAKSHMI KUNCHE Reviewing the Impact of Magnetic Prandtl Number and Magnetic Force Parameter on Convective Heat Transfer in Boundary Layers Hossam Nabwey, Muhammad Ashraf, Zia Ullah, Ahmed M. Rashad, Ali J. Chamkha Spectral Analysis for Entropy Generation and Irreversibility on NiZnFe_2O_4 – Engine Oil based Fluids RamReddy Chetteti, Sweta ., Pranitha Janapatla Study of global stability of rotating partially-ionized plasma saturating a porous medium Vishal Chandel, Sunil Kumar, Poonam Sharma Porous Medium Influenced Dissipative Hybrid Casson Nanofluid Flow over a Nonlinearly Stretching Sheet under Inclined Ohmic Lorentz Force Field A. R. Deepika, K. Govardhan, Hussain Basha, G Janardhana Reddy Effect of Motile Gyrotactic Microorganisms on Arterial Stenosis Sisko Nanofluid Flow Through Porous Medium : A Numerical Study Galal Moatimid, Mona Mohamed, Khaled Elagamy, Ahmed Gaber ELECTROTHERMOSOLUTAL CONVECTION IN NANOFLUID SATURATING POROUS MEDIUM Pushap Lata Sharma, Mohini Kapalta EFFECT OF VARIABLE GRAVITY ON THERMAL CONVECTION IN ROTATING JEFFREY NANOFLUID: DARCY-BRINKMAN MODEL Deepak Bains, Pushap Lata Sharma, Gian C. Rana Activation energy effect on MHD convective Maxwell nanofluid flow with Cattaneo-Christove heat flux over a porous stretching sheet JYOTHI NAGISETTY, VIJAYA KUMAR AVULA GOLLA Effects of different fins on Maxwell liquid under hybrid surveys of magnetic and porous material in presence of radiation factors Pooya Pasha, Payam Jalili, Bahram Jalili, Loghman Mostafa, Ahmed Mohammed Mahmood, Hussein Abdullah Abbas, D.D. Ganji
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain