Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Special Topics & Reviews in Porous Media: An International Journal
ESCI SJR: 0.259 SNIP: 0.466 CiteScore™: 0.83

ISSN Imprimer: 2151-4798
ISSN En ligne: 2151-562X

Special Topics & Reviews in Porous Media: An International Journal

DOI: 10.1615/SpecialTopicsRevPorousMedia.v6.i3.60
pages 283-296


Jai Bhagwan
Department of Mathematics, Government College for Women, Tosham, Bhiwani, Haryana - 127040, India
Dilbag Singh
Department of Mathematics, Panjab University, Chandigarh -160 014, India; University Grants Commission, New Delhi, India
S. K. Tomar
Department of Mathematics, Panjab University, Chandigarh 160 014, India


In this paper, Rayleigh-type surface wave propagation in a thermo-viscoelastic half-space with voids has been studied. The existence and propagation of such wave is represented by a dispersion equation, which happens to be irrational and complex. To solve this equation, we have rationalized it into a polynomial equation of degree 24, which is further solved numerically for exact complex roots. The correct roots of the dispersion equation are obtained after removing extraneous zeros. Then, these roots are filtered out for the inhomogeneous wave decaying with depth. The phase velocity and attenuation coefficient for Rayleigh-type wave are obtained from each qualified solution of the dispersion equation. The effect of temperature parameters, void parameters, and viscoelastic properties of the material is investigated on the phase speed and attenuation coefficients of the Rayleigh wave. Dispersion equations corresponding to Rayleigh wave propagation in several particular media have been deduced from the present dispersion relation.