Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 1.199 Facteur d'impact sur 5 ans: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2020034607
pages 1273-1288


Dongwei Zhang
Center on the Technology and Equipments for Energy Saving in Thermal Energy System of MOE, School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
Zhuantao He
Center on the Technology and Equipments for Energy Saving in Thermal Energy System of MOE, School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
Erhui Jiang
Center on the Technology and Equipments for Energy Saving in Thermal Energy System of MOE, School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
Chao Shen
School of Civil Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
Junjie Zhou
Center on the Technology and Equipments for Energy Saving in Thermal Energy System of MOE, School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
Meiyu Du
Center on the Technology and Equipments for Energy Saving in Thermal Energy System of MOE, School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China


Development of renewable energy technology and improvement of energy efficiency have currently become necessary. In particular, active ultrasonic cavitation has attracted a great deal of attention in the enhancement of heat transfer efficiency, and this has been investigated in the current work using numerical methods. A physical model and associated simulation methods are first introduced. Next, the influence of various operational parameters on heat transfer enhancement are presented and analyzed. Finally, simulations with different configurations, with the inclusion of ultrasonic vibrations, are presented. The results show that the average outlet temperature and Chilton and Colburn factor j rise with increasing ultrasonic amplitudes and Reynolds numbers, but decrease with increasing ultrasonic frequencies. The friction factor f decreases with similar changes in parameters. The optimum values obtained for Reynolds number and ultrasonic frequency are 63.5 and 20 kHz, respectively. Additionally, the ultrasonic vibrations enhanced the heat transfer performance at the front and back pipe walls. It is recommended that ultrasonic vibrations be applied at pipe locations with fully developed flow.


  1. An, Y., Formulation of Multibubble Cavitation, Phys. Rev. E, vol. 83, pp. 066313-1-066313-6, 2011.

  2. Bai, F.S., Wang, L., Saalbach, K.A., and Twiefel, J., A Novel Ultrasonic Cavitation Peening Approach Assisted by Water Jet, Appl. Sci., vol. 8, 2218, 2018.

  3. Bartoli, C. and Baffigi, F., Effects of Ultrasonic Waves on the Heat Transfer Enhancement in Subcooled Boiling, Exp. Therm. Fluid Sci, vol. 35, pp. 423-432, 2011.

  4. Bartoli, C. and Baffigi, F., Use of Ultrasonic Waves in Sub-Cooled Boiling, Appl. Therm. Eng., vol. 47, pp. 95-110, 2012.

  5. Bartoli, C., Baffigi, F., and Brunini, A., Heat Transfer Enhancement by Ultrasound Pressure Waves in Liquid Water: A Cooling Method for New Electronic Components, Appl. Mech. Mater., vols. 556-562, pp. 1968-1974, 2014.

  6. Bergles, A.E., Recent Developments in Enhanced Heat Transfer, Heat Mass Trans/., vol. 47, pp. 1001-1008, 2011.

  7. Boziuk, T.R., Smith, M.K., and Glezer, A., Enhanced Boiling Heat Transfer on Plain and Featured Surfaces Using Acoustic Actuation, Int. J. Heat Mass Trans/., vol. 108, pp. 181-190, 2017.

  8. Bulliard-Sauret, O., Ferrouillat, S., Vignal, L., Memponteil, A., and Gondrexon, N., Heat Transfer Enhancement Using 2 MHz Ultrasound, Ultrason. Sonochem., vol. 39, pp. 262-271, 2017.

  9. Chen, Q. and Huang, Y., Effect of Low Wick Permeability on Transient and Steady-State Performance of Heat Pipes, Heat Trans/. Res., vol. 50, pp. 1319-1332, 2019.

  10. Chen, Y.C., Sun, S.Y., Lai, Y.H., and Ma, C.F., Influence of Ultrasound to Convectional Heat Transfer with Fouling Cooling Water, Appl. Therm. Eng., vol. 100, pp. 340-347, 2016.

  11. Chuah, L.F., Amin, M.M., Yusup, S., Raman, N., Bokhari, A., Klemes, J.J., and Alnarabiji, M.M., Influence of Green Catalyst on Transesterification Process Using Ultrasonic-Assisted, J. Clean. Prod. B, vol. 136, pp. 14-22, 2016.

  12. Delouei, A.A., Sajjadi, H., Izadietal, M., and Mohebbic, R., The Simultaneous Effects of Nanoparticles and Ultrasonic Vibration on Inlet Turbulent Flow: An Experimental Study, Appl. Therm. Eng., vol. 146, pp. 268-277, 2019.

  13. Dhanalakshmi, N.P., Nagarajan, R., Sivagaminathan, N., and Prasad S.B., Acoustic Enhancement of Heat Transfers in Furnace Tubes, Chem. Eng. Process., vol. 59, pp. 36-42, 2012.

  14. Ghafarzadeha, M., Abedini, R., and Rajabi., R., Optimization of Ultrasonic Waves Application in Municipal Wastewater Sludge Treatment Using Response Surface Method, J. Clean. Prod. B, vol. 150, pp. 361-370, 2017.

  15. Gogate, P.R., Sutkar, V.S., and Pandit, A.B., Sonochemical Reactors: Important Design and Scale Up Considerations with a Special Emphasis on Heterogeneous Systems, Chem. Eng. J., vol. 166, pp. 1066-1082, 2011.

  16. Guo, Z.X., Heat Transfer Enhancement-A Brief Review of 2018 Literature, J. Enhanced Heat Transf., vol. 26, pp. 429-449, 2019.

  17. Hou, T.F., Chen, Y.C., Wang, Z.P., and Ma., C.F., Experimental Study of Fouling Process and Anti-Fouling Effect in Convective Heat Transfer under Ultrasonic Treatment, Appl. Therm. Eng., vol. 40, pp. 671-678, 2018.

  18. Hyun, S., Lee, D.R., and Loh, B.G., Investigation of Convective Heat Transfer Augmentation Using Acoustic Streaming Generated by Ultrasonic Vibrations, Int. J. Heat Mass Transf., vol. 48, pp. 703-718, 2005.

  19. Lauterbon, W. and Bolle, H., Experimental Investigations of Cavitation-Bubble Colllapse in the Neighborhood of Solid Boundary, J. Fluid Mech., vol. 72, pp. 391-399, 1975.

  20. Legay, M., Gondrexon, N., Le Person, S., Boldo, P., and Bontemps, A., Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances, Int. J. Chem. Eng., vol. 2011, 670108, 2011.

  21. Li, B., Han, X.D., Wan, Z.P., Wang, X.W., and Tang, Y., Influence of Ultrasound on Heat Transfer of Copper Tubes with Different Surface Characteristics in Sub-Cooled Boiling, Appl. Therm. Eng., vol. 92, pp. 93-103, 2016.

  22. Li, Z.C. and Lin, S.Y., Numerical Simulation of the Factors Influencing Ultrasonic Cavitation, J Shaanxi Univ.: Nat. Sci. Ed., vol. 36, pp. 38-42, 2008.

  23. Lin, W.Z., Cao, J.H., Fang, X.M., and Zhang, Z.G., Research Process of Heat Transfer Enhancement of Shell-and-Tube Heat Exchanger, Chem. Ind. Eng. Prog., vol. 37, pp. 1276-1286, 2018. DOI: 10.16085/j.issn.1000-6613.2017-2483.

  24. Ma, K.J., Jia, D.Z., Bao, W.Z., Zhao, W.X., Jin, D.M., and Sun, W.L., Research Progress in Mass Transfer Enhancement by Ultrasonic Field, Chem. Ind. Eng. Prog., vol. 29, pp. 11-16, 2010.

  25. Nomura, S., Murakami, K., and Kawada, M., Effects of Turbulence by Ultrasonic Vibration on Fluid Flow in a Rectangular Channel, Jpn. J. Appl. Phys, vol. 41, pp. 6601-6605, 2002.

  26. Nomura, S., Murakami, K., Aoyama, Y., and Ochi, J., Effects of Changes in Frequency of Ultrasonic Vibrations on Heat Transfer, Heat Transf.-Asian Res., vol. 29, pp. 358-372, 2000.

  27. Patel, V.M. and Mehta, H.B., Experimental Investigations on the Effect of Influencing Parameters on Operating Regime of a Closed Loop Pulsating Heat Pipe, J. Enhanced Heat Transf., vol. 26, pp. 333-344, 2019.

  28. Rahimi, M., Dehbani, M., and Abolhasani, M., Experimental Study on the Effects of Acoustic Streaming of High Frequency Ultrasonic Waves on Convective Heat Transfer: Effects of Transducer Position and Wave Interference, Int. Commun. Heat Mass Transf., vol. 39, pp. 720-725, 2012.

  29. Reyeligh, L. and Chapman, R.B., Collapse of an Initially Spherical Vapor Cavitity in the Neighborhoad of Solid Boundary, J. Fluid Mech., vol. 47, pp. 283-290, 1971.

  30. Schneider, B., Kosar, A., Kuo, C.J., Mishra, C., Cole, G.S., Scaringe, R.P., and Peles, Y., Cavitation Enhanced Heat Transfer in Microchannels, J. Heat Transf., vol. 128, pp. 1293-1301, 2006.

  31. Shen, C., Li, H.X., Zhang, D.W., Yu, P., Pan, N., and Wang, S.F., Study on the Heat Transfer Characteristic of Solar Powered Thermoacoustic Prime Mover at Different Tilted Angles, Appl. Therm. Eng., vol. 103, pp. 1126-1134, 2016.

  32. Talebi, M., Setareh, M., Saffar-Avval, M., and Abardeh, R., Numerical Investigation of Natural Convection Heat Transfer in a Cylindrical Enclosure due to Ultrasonic Vibrations, Ultrasonics, vol. 76, pp. 52-62, 2017.

  33. Tam, H.K., Tam, L.M., Ghajar, A.J., and Chen, I.P., Experimental Study of the Ultrasonic Effect on Heat Transfer Inside a Horizontal Mini-Tube in the Laminar Region, Appl. Therm. Eng., vol. 114, pp. 1300-1308, 2017.

  34. Tijani, M.E.H. and Spoelstra, S., A High Performance Thermoacoustic Engine, J. Appl. Phys., vol. 110, 093519, 2011.

  35. Yang, K., Wang, J.L., and Yurchenko, D., A Double-Beam Piezo-Magneto-Elastic Wind Energy Harvester for Improving the Galloping-Based Energy Harvesting, Appl. Phys. Lett., vol. 115, 193901, 2019.

  36. Ye, L.Z. and Zhu, X.J., Numerical Study on Dual-Frequency Ultrasonic Enhancing Cavitation Effect Based on Bubble Dynamic Evolution, Ultrason. Sonochem., vol. 59, 104744, 2019.

  37. Zhang, A.P., Xia, R.T., Ding, Q., and Yang Z., Study on Influence of Ultrasonic Cavitation on Heat Transfer Effect of Heat Exchangers, Chem. Eng. Mech., vol. 43, pp. 764-769, 2016.

  38. Zhang, D.W., Jiang, E.H., Shen, C., Zhou, J.J., Yang, W.W., and He, Y.L., Numerical Analysis on Thermoacoustic Prime Mover, J. Sound Vib., vol. 463, 114946, 2019.

  39. Zhang, D.W., Jiang, E.H., Zhou, J.J., Shen, C., He, Z.T., and Xiao, C.Y., Investigation on Enhanced Mechanism of Heat Transfer Assisted by Ultrasonic Vibration, Int. Commun. Heat Mass Transf., vol. 115, 104523, 2020.

  40. Zhang, D.W., Li, K.H., Zhou, J.J., and Wei, X.L., Investigation on the Chain Reaction Mechanism and Simulation of Heat Transfer Process Enhanced by Ultrasonic Vibrations, J. Eng. Thermophys., vol. 38, pp. 145-148, 2017.

  41. Zhang, P., Experimental Study on Heat Transfer Enhancement in Tube-Sheet Heat Exchanger by Ultrasonic Wave, Southeast University, Nanjing, China, 2015.

  42. Zheng, M.J., Li, B., Wan, Z.P., Wu, B.X., Tang, Y., and Li, J.R., Ultrasonic Heat Transfer Enhancement on Different Structural Tubes in LiBr Solution, Appl. Therm. Eng., vol. 106, pp. 625-633, 2016.

  43. Zhou, D.W., Heat Transfer Enhancement of Copper Nanofluid with Acoustic Cavitation, Int. J. Heat Mass Transf., vol. 47, pp. 3109-3117, 2004.

Articles with similar content:

4th Thermal and Fluids Engineering Conference, Vol.4, 2019, issue
Kumar S Ajay , Kumar S Sunil , M P Neeraj , Johns Mathews
Heat Transfer Research, Vol.49, 2018, issue 15
A. Al-Shamma'a, B. T. Chew, S. N. Kazi, A. Shaw, C. S. Oon, Ahmad Amiri
Heat Transfer Enhancement by Static Mixers for Very Viscous Fluids
Charles J. Hoogendoorn, Theodorus H. Van der Meer
Heat Transfer Research, Vol.48, 2017, issue 11
A. Arya, M. Rahgoshay, Ali Akbar Ranjbar, Abas Ramiar, M. Rahimi
Numerical Modelling of Induction Heated Thermal Valve of Vitrification Melters
Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019), Vol.0, 2019, issue
P. Selvaraj, P. Mangarjuna Rao, Vikas Kumar Mishra, G. Suneel