Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 1.199 Facteur d'impact sur 5 ans: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2020035317
pages 1317-1335

THERMODYNAMIC ASSESSMENT OF ULTRA-LOW-GLOBAL WARMING POTENTIAL REFRIGERANTS FOR SPACE AND WATER HEATERS

Luis Sánchez-Moreno-Giner
Institu to Universitario de Investigación en Ingeniería Energética, Universitat Politècnica de València, 46022, Valencia, Spain
Emilio López-Juárez
Institu to Universitario de Investigación en Ingeniería Energética, Universitat Politècnica de València, 46022, Valencia, Spain
José Gonzálvez-Maciá
Institu to Universitario de Investigación en Ingeniería Energética, Universitat Politècnica de València, 46022, Valencia, Spain
Abdelrahman H. Hassan
Institu to Universitario de Investigación en Ingeniería Energética, Universitat Politècnica de València, 46022, Valencia, Spain; Mechanical Power Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

RÉSUMÉ

The current paper studies the most suitable ultra-low-global warming potential (GWP) (GWP < 30) candidates in the market, considering also its grade of flammability and toxicity, for heat pumps employed for different space heating and domestic hot water (DHW) applications. A pre-design thermodynamic model has been developed to evaluate the performance and size limits for any subcritical or transcritical heat pump under certain working conditions. This generic model is based on the pinch point approach, so it does not depend on a certain type of heat exchangers, it only depends on the external working conditions. The results showed that all subcritical ultra-low-GWP, nonflammable, and nontoxic refrigerants considered have either lower coefficient of performance (COP) or volumetric heating capacity (VHC) compared with the reference high-GWP refrigerants R-410A and R-134a. Additionally, the only refrigerants with higher COP, such as R-717 (ammonia) or R-290 (propane), are either extremely flammable or toxic. For the applications need of high water-side temperature lift, the transcritical refrigerants R-744 (CO2) and R-170 (ethane) showed the best performance, regarding both COP and VHC values, of all the refrigerants studied. The refrigerants R-161, R-1270 (propylene), and R-1234yf presented a balanced performance in both space heating and DHW applications. This makes them potential candidates to be employed in subcritical multi-temperature levels heat pumps.

RÉFÉRENCES

  1. ASHRAE, Standard 34-Safety Standard for Refrigeration Systems and Designation and Classification of Refrigerants, 2016.

  2. CEN EN 378-1, Refrigerating Systems and Heat Pumps - Safety and Environmental Requirements-Part 1: Basic Requirements, Definitions, Classification and Selection Criteria, 2016.

  3. Charbonneau, P., Release Notes for PIKAIA 1.2, National Center for Atmospheric Research, Boulder, CO, NCAR Technical Note 451+STR, 2002.

  4. Dai, B., Dang, C., Li, M., Tian, H., and Ma, Y., Thermodynamic Performance Assessment of Carbon Dioxide Blends with Low-Global Warming Potential (GWP) Working Fluids for a Heat Pump Water Heater, Int. J. Refrig., vol. 56, pp. 1-14, 2015. DOI: 10.1016/j.ijrefrig.2014.11.009.

  5. Danfoss, Practical Application of Refrigerant R600a Isobutane in Domestic Refrigerator Systems, accessed from http://www. folk.ntnu.no/skoge/book-cep/diagrams/additional_diagrams/more_on_refrigerants/isobutane(r600a)-danfos.pdf, 2000.

  6. Emerson, Copeland Scroll Compressors for Dedicated Heat Pumps, ZH 56 K4E...ZH 11 M/E, 2004.

  7. European Commission, Energy Efficiency: Heating and Cooling, accessed from https://www.ec.europa.eu/energy/topics/energy-efficiency/heating-and-cooling_en, 2020.

  8. European Union, Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014: On Fluorinat- ed Greenhouse Gases and Repealing Regulation (EC) No 842/2006, Official J. Eur. Union, vol. 2014, no. 517, p. L150/195-230, 2014.

  9. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., Zaslavsky, L., Zhang, J., and Bolton, E.E., PubChem 2019 Update: Improved Access to Chemical Data, Nucleic Acids Res., vol. 47, no. D1, pp. D1102-9, 2019. DOI: 10.1093/nar/gky1033.

  10. Klein, S. and Nellis, G., Mastering EES, Madison, WI: F-Chart Software, 2012.

  11. Klein, S.A., Engineering Equation Solver (Version V10.451), 2017.

  12. Kujak, S. and Schultz, K., Insights into the Next Generation HVAC&R Refrigerant Future, Sci. Technol. Built Environ., vol. 22, no. 8, pp. 1226-1237, 2016. DOI: 10.1080/23744731.2016.1203239.

  13. Lee, Y.S. and Su, C.C., Experimental Studies of Isobutane (R600a) as the Refrigerant in Domestic Refrigeration System, Appl. Therm. Eng., vol. 22, no. 5, pp. 507-519, 2002. DOI: 10.1016/S1359-4311(01)00106-5.

  14. Lemmon, E.W., Bell, I.H., Huber, M.L., and McLinden, M.O., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, 2018.

  15. Liu, S., Li, Z., Dai, B., Zhong, Z., Li, H., Song, M., and Sun, Z., Energetic, Economic and Environmental Analysis of Air Source Transcritical CO2 Heat Pump System for Residential Heating in China, Appl. Therm. Eng., vol. 148, no. 2018, pp. 1425-1439, 2019. DOI: 10.1016/j.applthermaleng.2018.08.061.

  16. McLinden, M.O., Brown, J.S., Brignoli, R., Kazakov, A.F., and Domanski, P.A., Limited Options for Low-Global-Warming-Potential Refrigerants, Nat. Commun, vol. 8, pp. 1-9, 2017. DOI: 10.1038/ncomms14476.

  17. Minetto, S., Theoretical and Experimental Analysis of a CO2 Heat Pump for Domestic Hot Water, Int. J. Refrig., vol. 34, no. 3, pp. 742-751, 2011. DOI: 10.1016/j.ijrefrig.2010.12.018.

  18. Nellis, G.F. and Klein, S., Heat Transfer, New York: Cambridge University Press, 2009.

  19. Pitarch, M., Hervas-Blasco, E., Navarro-Peris, E., Gonzalvez-Macia, J., and Corberan, J.M., Evaluation of Optimal Subcooling in Subcritical Heat Pump Systems, Int. J. Refrig., vol. 78, pp. 18-31, 2017. DOI: 10.1016/J.IJREFRIG.2017.03.015.

  20. Stene, J., Integrated CO2 Heat Pump Systems for Space Heating and Hot Water Heating in Low-Energy Houses and Passive Houses, International Energy Agency (IEA) Heat Pump Programme - Annex 32 - Workshop in Kyoto, Kyoto, Japan, 2007.

  21. UNE-EN 14511-2, Air Conditioners, Liquid Chilling Packages, and Heat Pumps with Electrically Driven Compressors for Space Heating and Cooling-Part 2: Test Conditions, 2014.

  22. UNE-EN 16147, Heat Pumps with Electrically Driven Compressors-Testing, Performance Rating and Requirements for Marking of Domestic Hot Water Units. (Consolidated Version), 2017.

  23. UNEP, TEAP 2010 Progress Report: Assessment of HCFCs and Environmentally Sound Alternatives, accessed from https:// www.ozone.unep.org/, 2010.

  24. United Nations, Montreal Protocol on Substances That Deplete the Ozone Layer (with Annex). Concluded at Montreal on 16 September Tember 1987, 1989.

  25. Venkatarathnam, G., Mokashi, G., and Murthy, S.S., Occurrence of Pinch Points in Condensers and Evaporators for Zeotropic Refrigerant Mixtures, Int. J. Refrig., vol. 19, no. 6, pp. 361-368, 1996. DOI: 10.1016/S0140-7007(96)00023-0.

  26. Venkatarathnam, G. and Srinivasa Murthy, S., Effect of Mixture Composition on the Formation of Pinch Points in Condensers and Evaporators for Zeotropic Refrigerant Mixtures, Int. J. Refrig., vol. 22, no. 3, pp. 205-215, 1999. DOI: 10.1016/S0140-7007(98)00056-5.


Articles with similar content:

RENEWABLE THERMAL ENERGY ASSISTED NOVEL TRIGENERATION SYSTEM FOR INDUSTRIAL COOLING APPLICATIONS
Second Thermal and Fluids Engineering Conference, Vol.17, 2017, issue
Nishith B. Desai, Surendra Singh Kachhwaha, Bhavesh Patel
COMPREHENSIVE EVALUATION OF POWER SUPPLY SYSTEMS FOR COMMERCIAL BUILDINGS BASED ON GRAY RELATIONAL ANALYSIS AND ANALYTIC HIERARCHY PROCESS
Heat Transfer Research, Vol.47, 2016, issue 3
J. Chen, W. Lu, mo yang, Qingqing Yong
VAPORIZATION OF BINARY AND TERNARY NON-AZEOTROPIC MIXTURES INSIDE CHANNELS
International Heat Transfer Conference 16, Vol.4, 2018, issue
Arianna Berto, Marco Azzolin, Stefano Bortolin, Davide Del Col
Alternative refrigerant heat pump and refrigeration systems
International Heat Transfer Conference 12, Vol.1, 2002, issue
Yunho Hwang, Reinhard Radermacher
EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF HEAT REGENERATION PROCESS EFFICIENCY IN A HEAT PUMP WITH A MIXTURE OF REFRIGERANTS
International Journal of Energy for a Clean Environment, Vol.17, 2016, issue 2-4
Andrey A. Sukhikh, V. N. Kuznetsov, I. S. Antanenkova, Ereaihan, E. V. Mereutsa