Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 1.199 Facteur d'impact sur 5 ans: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2020034568
pages 1337-1350


Maryam Medghalchi
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, M5S3G8
Nasser Ashgriz
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada


A model for the growth of a bubble on a horizontal heated surface with a constant temperature and in a subcooled condition is presented. The model considers microlayer evaporation, transient thermal boundary layer conduction, and surface condensation or evaporation. The bubble growth time is divided into several stages, and the equation describing the bubble growth is simplified for different stages using a new characteristic time, and a new characteristic size. Several analytical solutions for the bubble growth are obtained at the early stages of the bubble growth and before the bubble lifts off. It is shown that before a critical time, the bubble growth is mainly governed by microlayer evaporation, however after the critical time the bubble growth is controlled by surface evaporation.


  1. Chen, Z. and Utaka, Y., On Heat Transfer and Evaporation Characteristics in the Growth Process of a Bubble with Microlayer Structure during Nucleate Boiling, Int. J. Heat Mass Transf., vol. 81, pp. 750-759, 2015.

  2. Cheung, S.C.P., Vahaji, S., Yeoh, G.H., and Tu, J.Y., Modeling Subcooled Flow Boiling in Vertical Channels at Low Pressures-Part 1: Assessment of Empirical Correlations, Int. J. Heat Mass Transf., vol. 75, pp. 736-753, 2014.

  3. Colombo, M. and Fairweather, M., Prediction of Bubble Departure in Forced Convection Boiling: A Mechanistic Mode, Int. J. Heat Mass Transf, vol. 85, pp. 135-146, 2015.

  4. Cooper, M.G., The Microlayer and Bubble Growth in Nucleate Pool Boiling, Int. J. Heat Mass Transf., vol. 12, pp. 915-933, 1969.

  5. Cooper, M.G. and Lloyd, A.J.P., The Microlayer in Nucleate Pool Boiling, Int. J. Heat Mass Transf., vol. 12, pp. 895-913, 1969.

  6. Das, S.K. and Roetzel, W., A Composite Heat Transfer Model for Pool Boiling on a Horizontal Tube at Moderate Pressure, Can. J. Chem. Eng., vol. 82, pp. 316-322, 2004.

  7. Dhir, V.K., Abarajith, H.S., and Li, D., Bubble Dynamics and Heat Transfer during Pool and Flow Boiling, Heat Transf. Eng., vol. 28, no. 7, pp. 608-624, 2007.

  8. Foster, H.K. and Grief, R., Heat Transfer to Boiling Liquid, Mechanism and Correlations, Trans. ASME J. Heat Transf., vol. 81, pp. 43-53, 1958.

  9. Han, C.Y. and Griffith, P., The Mechanism of Heat Transfer in Nucleate Pool Boiling-Part I, Int. J. Heat Mass Transf., vol. 8, pp. 887-904, 1965.

  10. Hsieh, Y.Y., Chiang, L.J., and Lin, T.F., Subcooled Flow Boiling Heat Transfer of R-134a and the Associated Bubble Characteristics in a Vertical Plate Heat Exchanger, Int. J. Heat Mass Transf., vol. 45, pp. 1791-1806, 2002.

  11. Hsu, Y. Y. and Graham, R.W., An Analytical and Experimental Study of the Thermal Boundary Layer and Ebullition Cycle in Nucleate Boiling, NASA Tech. Rep. TND-594, Cleveland, OH, 1961.

  12. Huang, Y.L and Shi, S.S., Numerical Simulation of Vapor-Liquid Phase Flow and Vapor-Liquid Phase Change, Int. Conf. on Computer Systems and Industrial Applications (CISIA), Bangkok, Thailand, 2015.

  13. Jia, H.W., Zheng, P., Fu, X., and Jiang, S.C., A Numerical Investigation of Nucleate Boiling at a Constant Surface Temperature, App/. Therm. Eng., vol. 83, pp. 248-257, 2015.

  14. Jung, S. and Kim, H., An Experimental Method to Simultaneously Measure the Dynamics and Heat Transfer Associated with a Single Bubble during Nucleate Boiling on a Horizontal Surface, Int. J. Heat Mass Transf., vol. 73, pp. 365-375, 2014.

  15. Kunkelmann, C. and Stephan, P., Numerical Simulation of the Transient Heat Transfer during Nucleate Boiling of Refrigerant HTF-7100, Int. J. Refrig., vol. 33, pp. 1221-1228, 2010.

  16. Lal, S., Sato, Y., and Niceno, B., Direct Numerical Simulation of Bubble Dynamics in Subcooled and Near-Saturated Convective Boiling, Int. J. HeatF/uid F/ows, vol. 51, pp. 16-28, 2015.

  17. Marek, R. and Straub, J., Analysis of the Evaporation Coefficient and the Condensation Coefficient of Water, Int. J. Heat Mass Transf, vol. 44, pp. 39-53, 2001.

  18. Medghalchi, M., Heat and Mass Transfer around a Bubble on a Horizontal Surface in a Subcooled Flow, PhD, University of Toronto, Toronto, 2016.

  19. Ose, Y. and Kunugi, T., Development of a Boiling and Condensation Model on Subcooled Boiling Phenomena, Energy Procedia, vol. 9, pp. 605-618, 2011.

  20. Ose, Y. and Kunugi, T., Numerical Simulation of Bubble Departure in Subcooled Pool Boiling Based on Non-Empirical Boiling and Condensation Model, 7th Int. Symp. on Mu/tiphase F/ow, Heat Mass Transfer and Energy Conversion. Conf. Proc, vol. 1547, pp. 733-740, 2013.

  21. Plesset, M.S. and Zwick, S.A., The Growth of Vapor Bubbles in Superheated Liquids, J. App/. Phys., vol. 25, pp. 493-500, 1954.

  22. Prodanovic, V., Fraser, D., and Salcudean, M., Bubble Behavior in Subcooled Flow Boiling of Water at Low Pressure and Low Flow Rates, Int. J. Mu/tiphase F/ow, vol. 28, pp. 1-19, 2002.

  23. Ranz, W.E. and Marshal, W.R., Evaporation from Drops, Chem. Eng. Prog., vol. 48, pp. 141-146, 1952.

  24. Son, G., Numerical Study on a Sliding Bubble during Nucleate Boiling, KSME Int. J., vol. 15, no. 7, pp. 931-940, 2001.

  25. Stephan, P.C. and Busse, C.A., Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls, Int. J. Heat Mass Transf., vol. 35, pp. 383-391, 1992.

  26. Sun, D., Xu, J., and Chen, Q., Modeling of the Evaporation and Condensation Phase-Change Problems with Fluent, Numer. Heat Transf., Part B, vol. 66, pp. 326-342, 2014.

  27. Surgue, R.M., The Effect of Orientation Angle, Subcooling, Heat Flux, Mass Flux, and Pressure on Bubble Growth and Detachment in Subcooled Flow Boiling, Masters, Massachusetts Institute of Technology, Cambridge, MA, 2012.

  28. Synder, N.R. and Edwards, D.K., Summary of Conference on Bubble Dynamics and Boiling Heat Transfer, Memo (20-37) Jet Prop. Lab., 1956.

  29. Tong, L.S. and Tang, Y.S., Boi/ing Heat Transfer and Two Phase F/ow, Milton Park, UK: Taylor and Francis Press, 1997.

  30. Unal, H.C., Maximum Bubble Diameter, Maximum Bubble Growth Time and Bubble Growth Rate during the Subcooled Nucleate Flow Boiling, Int. J. Heat Mass Transf., vol. 19, pp. 643-649, 1976.

  31. Utaka, Y., Kashiwabara, Y., and Ozaki, M., Microlayer Structure in Nucleate Boiling of Water and Ethanol at Atmospheric Pressure, Int. J. Heat Mass Transf., vol. 57, pp. 222-230, 2013.

Articles with similar content:

International Heat Transfer Conference 6, Vol.1, 1978, issue
S. A. K. Abayawardana, G. H. Anderson
International Heat Transfer Conference 16, Vol.18, 2018, issue
Irina Graur, Lounes Tadrist, Alexey Polikarpov, Elizaveta Ya. Gatapova, Oleg A. Kabov
Microscopic Mechanism of Cavitation Enhanced Heat Transfer: A Modeling Study
International Heat Transfer Conference 15, Vol.23, 2014, issue
Bin Liu, Jun Cai, Xiulan L. Huai
Interfacial Instability on Vapor Bubble Exposed to Subcooled Pool
International Heat Transfer Conference 15, Vol.38, 2014, issue
Ichiro Ueno, Tomohiro Osawa, Chungpyo Hong, Takahito Saiki, Jun Ando, Toshihiro Kaneko
International Heat Transfer Conference 13, Vol.0, 2006, issue
L. Li, Z. Zouaoui, Chris D. Rielly, Bin Chen, Xiaobing Huang, Xiaogang Yang