Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 1.199 Facteur d'impact sur 5 ans: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v37.i4.50
pages 349-363

Estimation of the Thermohydraulic Efficiency of Heat Exchanging Apparatuses with Twisted Tubes

Boris V. Dzyubenko
Moscow Aviation Institute (State Technical University), 4 Volokolamskoe Highway, Moscow, 125993, Russia


The paper presents generalizing relations to calculate heat transfer and hydraulic resistance in longitudinal flow of heat-transfer agents in the cavities of a heat exchanger with twisted tubes and the results of comparison of the thermohydraulic efficiency of the heat-transfer surfaces of the twisted tubes with the surfaces of smooth tubes and tubes having other heat-transfer intensifiers. It has been found that in the flow transition region Reynolds-related regimes with an advanced increase in the heat-transfer coefficient in comparison with the increase in the coefficient of hydraulic resistance is implemented. In a longitudinal flow past twisted tubes, a 1.5−3.5-fold increase in the heat-transfer coefficient is ensured, as compared to flow in smooth straight tubes. The estimation of the thermohydraulic efficiency of heat exchangers made by the method of effective parameters and the analysis of the efficiency of various heat-transfer surfaces made it possible to find the flow regions where the heat-exchange apparatuses with flow swirling by twisted tubes are advantageous over heat exchangers involving other methods of heat-transfer enhancement.

Articles with similar content:

Efficiency of Heat Transfer Surfaces Using the Method of Effective Parameters
Heat Transfer Research, Vol.32, 2001, issue 7&8
R. I. Yakimenko, Boris V. Dzyubenko
Heat Transfer and Resistance in Channels with Spherical Grooves on the Walls
Heat Transfer Research, Vol.31, 2000, issue 1-2
Yu. F. Gortyshov, R. D. Amirkhanov, V. V. Olimpiev
Heat Transfer in Separation Zones of Turbulized Flows
Heat Transfer Research, Vol.31, 2000, issue 6-8
Viktor I. Terekhov, Nadezhda I. Yarygina
Water Boiling at Tubular Surfaces Formed by Cavities
Heat Transfer Research, Vol.29, 1998, issue 1-3
G. V. Kovalenko, Artem Khalatov, G. G. Geletuha
International Heat Transfer Conference 7, Vol.6, 1982, issue
V. M. Ievlev, Boris V. Dzyubenko, Yu. I. Danilov, E. K. Kalinin, Guenrikh A. Dreitser