Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 0.404 Facteur d'impact sur 5 ans: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2013005101
pages 241-262

LATTICE BOLTZMANN SIMULATION OF FORCED CONVECTION OVER AN ELECTRONIC BOARD WITH MULTIPLE OBSTACLES

Javad Alinejad
Center of Excellence on Modeling and Control Systems (CEMCS) and Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran
Javad Abolfazli Esfahani
Ferdowsi University of Mashhad

RÉSUMÉ

Forced convection heat transfer over an electronic board mounted with several shapes of obstacles, consisting of three cylinders and three cubes, is investigated using the lattice Boltzmann method (LBM). Incompressible flow of field through the obstacles over a sheet is assumed. The simulations are performed at Pr = 0.71. Studies are carried out for flow, with Reynolds numbers ranging from 250 to 1000. Uniform heat fluxes through the base of obstacles are assumed. Results show that LBM is suitable for the study of heat transfer in forced convection problems. Results indicate that an increase in Reynolds number yields to the removal of a higher quantity of energy from obstacle faces. Results also show that reducing the distance between obstacles makes the flow deviate and accelerate in the vicinity of faces and causes an increase in the rate of convective heat transfer from obstacles.


Articles with similar content:

EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT ON THE ENDWALL AROUND AN OBSTACLE EMBEDDED WITH A VORTEX GENERATOR PAIR
International Heat Transfer Conference 16, Vol.14, 2018, issue
Lei Wang, Bengt Sunden, Safeer Hussain, Jian Liu
NUMERICAL SIMULATION OF THREE-DIMENSIONAL SEPARATED FLOW AND HEAT TRANSFER AROUND STAGGERED SURFACE-MOUNTED RECTANGULAR BLOCKS IN A CHANNEL
ICHMT DIGITAL LIBRARY ONLINE, Vol.11, 2004, issue
Terukazu Ota, Hideki Yanaoka, Madoka Nakajima, Hiroyuki Yoshikawa
INFLUENCE OF AN ADIABATIC SQUARE CYLINDER ON HYDRODYNAMIC AND THERMAL CHARACTERISTICS IN A TWO-DIMENSIONAL BACKWARD-FACING STEP CHANNEL
Heat Transfer Research, Vol.46, 2015, issue 1
Amrita Sengupta, Sudipta De, Dipankar Chatterjee, Nandini Debnath
FLOW SUBJECTED TO A POROUS BLOCK: INFLUENCE OF BODY ASPECT RATIO ON ENTROPY GENERATION RATE
Journal of Porous Media, Vol.15, 2012, issue 2
Bekir S. Yilbas, S. Z. Shuja
NUMERICAL STUDY OF A MIXED CONVECTION OF NANOFLUID IN A CAVITY FILLED WITH A POROUS MEDIUM FOR DIFFERENT LOCATIONS OF THE HEAT SOURCES
Second Thermal and Fluids Engineering Conference, Vol.41, 2017, issue
Ali Al-Zamily