Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 0.404 Facteur d'impact sur 5 ans: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018026607
pages 1417-1436

FLOW BOILING OF R134a IN A LARGE SURFACE AREA MICROCHANNEL ARRAY FOR HIGH-FLUX LASER DIODE COOLING

Taylor Bevis
Colorado State University, Fort Collins, CO
Bryan Burk
Colorado State University, Fort Collins, CO
Jensen Hoke
Colorado State University, Fort Collins, CO
Jack Kotovsky
Lawrence Livermore National Laboratory, Livermore, CA
Julie Hamilton
Lawrence Livermore National Laboratory, Livermore, CA
Todd M. Bandhauer
Interdisciplinary Thermal Science Laboratory Colorado State University, Fort Collins, CO 80524, USA

RÉSUMÉ

Packaging high average power laser diode arrays that generate heat at an area average flux in excess of 1 kW·cm-2 is a significant engineering challenge. While liquid microchannel coolers have demonstrated up to 11.9 kW·cm-2, two-phase microchannel array coolers have not achieved 1 kW cm-2 due to critical heat flux and flow instabilities. In the current study, flow boiling heat transfer was characterized by a 1 × 10 mm heated zone centered over a 5 × 10 mm array of 125 very small channels (45 × 200 μm) with R134a as the phase change fluid. The high aspect ratio channels (4.4:1) were manufactured using MEMS fabrication techniques, which yielded a large heat transfer surface area to volume ratio. A test facility was used to characterize the heat transfer performance of boiling R134a over a range of saturation temperatures (15°C to 25°C), mass fluxes (735-2230 kg·m-2·s-1), and heat duties (< 110.3 W). During the tests, the calculated outlet vapor quality exceeded 61%, and the base heat flux at the heater reached a maximum of 1.1 kW·cm-2. The resulting average experimental flow boiling heat transfer coefficients are found to be as large a 13.4 kW·m-2·K-1 over the approximately 3 mm two-phase region, with an average uncertainty of ± 2.72%. A substantial amount of heat was spread downstream via the low thermal resistance silicon floor. Specifically, between 29.5% and 55.1% of the heat dissipated in the two-phase region was dissipated over the heater. The remaining heat dissipated in the two-phase region was dissipated in the 2 mm of channel downstream of the heater. This suggests that heat spreading from the hotspot played a vital role in dissipating the heat load.

RÉFÉRENCES

  1. Bandhauer, T.M. and Garimella, S., Passive, Internal Thermal Management System for Batteries Using Microscale Liquid-Vapor Phase Change, Appl. Therm. Eng., vol. 61, no. 2, pp. 756-769, 2013.

  2. Beach, R., Bennett, W.J., Frietas, B.L., Mundinger, D., Comaskey, B.J., Solarz, R.W., and Emanuel, M.A., Modular Microchannel Cooled Heatsinks for High Average Power Laser Diode Arrays, IEEE J. Quantum Electron., vol. 28, no. 4, pp. 966-976, 1992.

  3. Bertsch, S.S., Groll, E.A., and Garimella, S.V., A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels, Int. J. Heat Mass Transf.., vol. 52, nos. 7-8, pp. 2110-2118, 2009a.

  4. Bertsch, S.S., Groll, E.A., and Garimella, S.V., Effects of Heat Flux, Mass Flux, Vapor Quality, and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels, Int. J. Multiphase Flow, vol. 35, no. 2, pp. 142-154, 2009b.

  5. Bevis, T., High Heat Flux Phase Change Thermal Management of Laser Diode Arrays, MS, Colorado State University, 2016.

  6. Bogojevic, D., Sefiane, K., Walton, A.J., Lin, H., and Cumins, G., Two-Phase Flow Instabilities in a Silicon Microchannels Heat Sink, Int. J. Heat Fluid Flow, vol. 30, no. 5, pp. 854-867, 2009.

  7. Calame, J.P., Myers, R.E., Binari, S.C., Wood, F.N., and Garven, M., Experimental Investigation of Microchannel Coolers for the High Heat Flux Thermal Management of GaN-on-SiC Semiconductor Devices, Int. J. Heat Mass Transf., vol. 50, nos. 23-24, pp. 4767-4779, 2007.

  8. Carey, V P., Liquid-Vapor Phase-Change Phenomena, London: Taylor & Francis, 1992.

  9. Cavallini, A., Doretti, L., Matkovic, M., and Rossetto, L., Update on Condensation Heat Transfer and Pressure Drop inside Minichannels, Heat Transf. Eng., vol. 27, no. 4, pp. 74-87, 2006.

  10. Celik, I.B., Ghia, U., Roache, P. J., and Freitas, C.J., Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications, J. Fluids Eng., vol. 130, no. 7, pp. 078001-1-078001-4, 2008.

  11. Churchill, S.W., Friction-Factor Equation Spans All Fluid Flow Regimes, Chem. Eng. J., vol. 84, pp. 91-92, 1977.

  12. Crane, Flow of Fluids through Valves, Fittings and Pipes, Crane Co., New York, Tech. Paper No. 410, 1979.

  13. DARPA, Broad Agency Announcement: Near Junction Thermal Transport (NJTT), Microsystems Technology Office, DARPA-BAA-11-09, 2010.

  14. Glukhikh, I.V., Polikarpov, S.S., Frolov, S.V., Volkov, A.S., and Privezentsev, V.V., Cooling of Silver Bullet Laser Diode Sub-modules, Optics, Quantum Electron., vol. 55, no. 6, pp. 855-859, 2010.

  15. Han, Y., Lau, B.L., and Zhang, X., Enhancement of Hotspot Cooling With Diamond Heat Spreader on Cu Microchannel Heat Sink for GaN-on-Si Device, IEEE Trans, Comp. Pack. Tech., vol. 4, no. 6, pp. 983-990, 2014.

  16. Harirchian, T. and Garimella, S.V., Boiling Heat Transfer and Flow Regimes in Microchannels-A Comprehensive Understanding, J. Electron. Packag., vol. 133, no. 1, pp. 011001-1-011001-10, 2011.

  17. Hetsroni, G., Boiling in MicroChannels, Bull. Polish Acad. Sci. Tech. Sci., vol. 58, no. 1, pp. 155-163, 2010.

  18. Hetsroni, G., Mosyak, A., Pogrebnyak, E., and Segal, Z., Explosive Boiling of Water in Parallel MicroChannels, Int. J. Multiphase Flow, vol. 31, no. 4, pp. 371-392, 2005.

  19. Kim, S.M. and Mudawar, I., Review of Databases and Predictive Methods for Heat Transfer in Condensing and Boiling Mini/Microchannel Flows, Int. J. Heat Mass Transf., vol. 77, pp. 627-652, 2014.

  20. Kosar, A, Kuo, C.-J., and Peles, Y., Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors, J. Heat Transf., vol. 128, pp. 251-260, 2006.

  21. Kuo, C.-J. and Peles, Y., Local Measurement of Flow Boiling in Structured Surface Microchannels, Int. J. Heat Mass Transf., vol. 50, nos. 23-24, pp. 4513-4526, 2007.

  22. Kuo, C.-J. and Peles, Y., Critical Heat Flux of Water at Subatmospheric Pressures in Microchannels, J. Heat Transf., vol. 130, no. 7, pp. 072403-1-072403-7, 2008a.

  23. Kuo, C.-J. and Peles, Y., Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities, J. Heat Transf., vol. 130, no. 7, pp. 72402-1-72402-10, 2008b.

  24. Lee, H.J. and Lee, S.Y., Heat Transfer Correlation for Boiling Flows in Small Rectangular Horizontal Channels with Low Aspect Ratios, Int. J. Multiphase Flow, vol. 27, pp. 2043-2062, 2001.

  25. Lee, P.-S. and Garimella, S.V., Saturated Flow Boiling Heat Transfer and Pressure Drop in Silicon Microchannel Arrays, Int. J. Heat Mass Transf., vol. 51, nos. 3-4, pp. 789-806, 2008.

  26. Li, D., Wu, G.S., Wang, W., Wang, Y.D., Liu, D., Zhang, D.C., Chen, Y.F., Peterson, G.P., and Yang, R., Enhancing Flow Boiling Heat Transfer in Microchannels for Thermal Management with Monolithically-Integrated Silicon Nanowires, Nano Lett., vol. 12, no. 7, pp. 3385-3390, 2012.

  27. Li, W. and Wu, Z., A General Correlation for Evaporative Heat Transfer in Micro/Mini-Channels, Int. J. Heat Mass Transf., vol. 53, nos. 9-10, pp. 1778-1787, 2010.

  28. Lin, S., Kew, P.A., and Cornwell, K., Two-Phase Heat Transfer to a Refrigerant in a 1 mm Diameter Tube, Int. J. Refrig., vol. 24, pp. 51-56, 2001.

  29. Lockhart, R.W. and Martinelli, R.C., Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes, Chem. Eng. Prog., vol. 45, no. 1, pp. 39-48, 1949.

  30. Luo, Y., Liu, G., Zou, L.L., Yu, B.K., and Wang, X.D., Thermal Behavior Investigation of Silicon-Pyrex Micro Heat Pipe, AIP Adv., vol. 4, no. 3, pp. 031305-1-031305-7, 2014.

  31. Mudawar, I. and Bowers, M.B., Ultra-High Critical Heat Flux (CHF) for Subcooled Water Flow Boiling-I: CHF Data and Parametric Effects for Small Diameter Tubes, Int. J. Heat Mass Transf., vol. 42, no. 8, pp. 1405-1428, 1999.

  32. Nasr, M.H., Green, C.E., Kottke, P.A., Zhang, X., Sarvey, T.E., Joshi, Y.K., Bakir, M.S., and Fedorov, A.G., Extreme-Microgap (x-mgap) Based Hotspot Thermal Management with Refrigerant Flow Boiling, in: 2016 15th IEEE ITherm, pp. 1466-1476, 2016.

  33. Palko, J.W., Zhang, C., Wilbur, J.D., Dusseault, T.J., Asheghi, M., Goodson, K.E., and Santiago, J.G., Approaching the Limits of Two-Phase Boiling Heat Transfer: High Heat Flux and Low Superheat, Appl. Phys. Lett., vol. 107, 253903, 2015.

  34. Park, J.E., Thome, J.R., and Michel, B., Effect of Inlet Orifice on Saturated CHF and Flow Visualization in Multi-Microchannel Heat Sinks, Annu. IEEE Semicond. Therm. Meas. Manage. Symp., pp. 1-8, 2009.

  35. Revellin, R., Quiben, J.M., Bonjour, J., and Thome, J.R., Effect of Local Hot Spots on the Maximum Dissipation Rates during Flow Boiling in a Microchannel, IEEE Trans., Components Packag. Technol., vol. 31, no. 2, pp. 407-416, 2008.

  36. Ritchey, S.N., Weibel, J.A., and Garimella, S.V., Local Measurement of Flow Boiling Heat Transfer in an Array of NonUniformly Heated Microchannels, Int. J. Heat Mass Transf., vol. 71, pp. 206-216, 2014.

  37. Roy, S.K. and Avanic, B.L., A Very High Heat Flux Microchannel Heat Exchanger for Cooling of Semiconductor Laser Diode Arrays, IEEE Trans., Components, Packag. Manuf Technol., Part B, vol. 19, no. 2, pp. 444-451, 1996.

  38. Sahu, V., Fedorov, A.G., Joshi, J., Yazawa, K., Ziabari, A., and Shakouri, A., Energy Efficient Liquid-Thermoelectric Hybrid Cooling for Hot-Spot Removal, IEEE 28th SEMI-THERM, pp. 130-134, 2012.

  39. Saitoh, S., Daiguji, H., and Hihara, E., Effect of Tube Diameter on Boiling Heat Transfer of R-134a in Horizontal Small-Diameter Tubes, Int. J. Heat Mass Transf., vol. 48, pp. 4473-4984, 2005.

  40. Shah, R.K. and London, A.L., Laminar Flow Forced Convection in Ducts, vol. 1, New York: Academic Press, 1978.

  41. Skidmore, J.A., Freitas, B.L., Crawford, J., Satariano, J., Utterback, E., DiMercurio, L., Cutter, K., and Sutton, S., Silicon Monolithic Microchannel-Cooled Laser Diode Array, Appl. Phys. Lett., vol. 77, no. 1, p. 10, 2000.

  42. Szczukiewicz, S., Borhani, N., and Thome, J.R., Two-Phase Heat Transfer and High-Speed Visualization of Refrigerant Flows in 100 x 100 m2 Silicon Multi-Microchannels, Int. J. Refrig., vol. 36, no. 2, pp. 402-413, 2013a.

  43. Szczukiewicz, S., Borhani, N., and Thome, J.R., Two-Phase Flow Operational Maps for Multi-Microchannel Evaporators, Int. J. Heat Fluid Flow, vol. 42, pp. 176-189, 2013b.

  44. Wang, G., Cheng, P., and Bergles, A.E., Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Micro-channels, Int. J. Heat Mass Transf., vol. 51, nos. 9-10, pp. 2267-2281, 2008.

  45. Won, Y., Cho, J., Agonafer, D., Asheghi, M., and Goodson, K.E., Fundamental Cooling Limits for High Power Density Gallium Nitride Electronics, IEEE Trans., Components Packag. Technol., vol. 5, no. 6, pp. 737-744, 2015.

  46. Yan, Y.Y. and Lin, T.F., Evaporation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Small Pipe, Int. J. Heat Mass Transf., vol. 41, pp. 4183-4194, 1998.

  47. Zhu, Y., Antao, D.S., Chu, K.-H., Chen, S., Hendricks, T.J., Zhang, T., and Wang, E.N., Surface Structure Enhanced Microchannel Flow Boiling, J. Heat Transf., vol. 138, pp. 091501-1-091501-13, 2016.


Articles with similar content:

TWO-PHASE COOLING OF CONCENTRATING PHOTOVOLTAIC CELLS
Interfacial Phenomena and Heat Transfer, Vol.2, 2014, issue 3
Albert Mosyak, Gad Hetsroni
THERMAL PERFORMANCE OF PLATE FIN HEAT SINK COMBINED WITH COPPER FOAM
Heat Transfer Research, Vol.50, 2019, issue 16
Lazarus Godson Asirvatham, Jafar Amani, Omid Mahian, Kitti Nilpueng, ahmet selim dalkilic, Somchai Wongwises
HYBRID WICK VAPOR CHAMBER THERMAL PERFORMANCE EVALUATION FOR HIGH HEAT FLUX APPLICATION BY AIR COOLING
International Heat Transfer Conference 16, Vol.10, 2018, issue
Yanghe Liu, Feng Zhou, Tianzhu Fan, Ercan M. Dede
Thermal Performance of a Compact Two-phase Thermosyphon: Response to Evaporator Confinement and Transient Loads
Journal of Enhanced Heat Transfer, Vol.6, 1999, issue 2-4
Yogendra Joshi, Chandrashekhar Ramaswamy, William B. Johnson, Wataru Nakayama
PERFORMANCE CHARACTERISTICS OF A TWO-PHASE COLD PLATE CONTAINING MINI-CHANNELS AND POROUS METALLIC FOAM
International Heat Transfer Conference 11, Vol.11, 1998, issue
S. M. You, C.N. Ammerman , D.C. Price