Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 0.404 Facteur d'impact sur 5 ans: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014007271
pages 563-578

MIXED-CONVECTION FLOW IN A LID-DRIVEN SQUARE CAVITY FILLED WITH A NANOFLUID WITH VARIABLE PROPERTIES: EFFECT OF THE NANOPARTICLE DIAMETER AND OF THE POSITION OF A HOT OBSTACLE

Mohammad Hemmat Esfe
Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Seyed Sadegh Mirtalebi Esforjani
Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran
Mohammad Akbari
Department of Mechanical Engineering, Semnan University, Semnan, Iran
Arash Karimipour
Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran

RÉSUMÉ

In this article, a mixed-convection flow in a cavity filled with an Al2O3/water nanofluid and having an inside hot obstacle and variable properties is studied numerically using the finite volume method. The thermal conductivity and effective viscosity of the nanofluid were determined using the new variable properties models proposed by Xu and Jang, respectively. The bottom, top, and the left walls of the cavity are adiabatic, while the right wall is maintained at a cold temperature (Tc). A hot rectangular obstacle is located at the bottom of the square cavity. The upper adiabatic lid is moving in its positive direction. To numerically solve the governing equations, the finite volume method along with a displaced grid system is used, and the equations are transformed into a code using FORTRAN. In this study the influence of some important parameters such as the diameter of a nanoparticle, Richardson number, and the position of the hot obstacle on the hydrodynamic and thermal characteristics are discussed. The results indicate that a decrease in the nanoparticle diameter at a constant Ri enhances heat transfer. On the other hand, the heat transfer rate increased as Ri was decreased for a particular diameter and position of the hot obstacle.


Articles with similar content:

MIXED CONVECTION FLUID FLOW AND HEAT TRANSFER OF THE Al2O3−WATER NANOFLUID WITH VARIABLE PROPERTIES IN A CAVITY WITH AN INSIDE QUADRILATERAL OBSTACLE
Heat Transfer Research, Vol.46, 2015, issue 5
Hamid Teimouri, Masoud Afrand, Arash Karimipour, Mohammad Hemmat Esfe, Mohammaj javad Noroozi, Amir Hossein Refahi
MIXED CONVECTION FLOW AND HEAT TRANSFER IN A LID-DRIVEN CAVITY SUBJECTED TO NANOFLUID: EFFECT OF TEMPERATURE, CONCENTRATION AND CAVITY INCLINATION ANGLES
Heat Transfer Research, Vol.45, 2014, issue 5
Seyed Sadegh Mirtalebi Esforjani, Mohammad Akbari, Mohammad Hemmat Esfe
MIXED CONVECTION FLOW AND HEAT TRANSFER IN A VENTILATED INCLINED CAVITY CONTAINING HOT OBSTACLES SUBJECTED TO A NANOFLUID
Heat Transfer Research, Vol.45, 2014, issue 4
Seyed Sadegh Mirtalebi Esforjani, Mohammad Akbari, Mohammad Hemmat Esfe, Sina Niazi
BUOYANCY-DRIVEN HEAT TRANSFER ENHANCEMENT IN A SINUSOIDALLY HEATED ENCLOSURE UTILIZING HYBRID NANOFLUID
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 5
Tahar Tayebi, Ali J. Chamkha
EFFECT OF NANOFLUID VARIABLE PROPERTIES ON MIXED CONVECTION FLOW AND HEAT TRANSFER IN AN INCLINED TWO-SIDED LID-DRIVEN CAVITY WITH SINUSOIDAL HEATING ON SIDEWALLS
Heat Transfer Research, Vol.45, 2014, issue 5
Davood Semiromi Toghraie, Masoud Afrand, Mohammad Akbari, Arash Karimipour, Mohammad Hemmat Esfe