Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 0.404 Facteur d'impact sur 5 ans: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2015006953
pages 969-994


Azzedine Abdedou
Departement du Genie Mecanique, Faculte de Genie de Construction, Universite Mouloud Mammeri De Tizi Ouzou, Algerie; USTHB, Faculty of Mechanical and Process Engineering (FGMGP), Laboratory of Multiphase Transport and Porous Media (LTPMP), Algeria
Khedidja Bouhadef
USTHB, Faculty of Mechanical and Process Engineering (FGMGP), Laboratory of Multiphase Transport and Porous Media (LTPMP), Algeria
Frederic Topin
Polytech Marseille, Laboratoire IUSTI, UMR CNRS 7343, Technopole de Chateau Gombert, 5 rue Enrico Fermi, 13453 Marseille Cedex 13, France


We numerically investigate forced convection heat transfer with heat generation and local thermal non-equilibrium in a porous channel bounded by parallel plates. Macroscopic continuity, momentum, and energy equations are presented and solved. Local thermal nonequilibrium is considered by means of independent equations for the solid matrix and the working fluid. The used numerical methodology is based on the control-volume approach. The effects of heat generation rate, thermal conductivity ratio, and Biot interstitial number on the local thermal equilibrium are presented. The main results obtained particularly show that lower values of the temperature difference (local thermal equilibrium) between the solid and the fluid phases are obtained at low values of conductivity ratio and high values of Biot number, while large local temperature differences (local thermal nonequilibrium) are obtained for low Biot numbers values and high thermal conductivity ratios. Moreover, increasing heat generation rate generally leads to thermal nonequilibrium accentuation, particularly and most significantly for low Biot number values.