Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 0.404 Facteur d'impact sur 5 ans: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2011002483
pages 359-377

Lattice Boltzmann Method for Laminar Forced Convection in a Channel with a Triangular Prism

Ali Cemal Benim
Duesseldorf University of Applied Sciences
E. Aslan
Department of Mechanical Engineering, Sakarya University, TR-54187 Sakarya, Turkey
I. Taymaz
Department of Mechanical Engineering, Sakarya University, TR-54187 Sakarya, Turkey

RÉSUMÉ

The Lattice Boltzmann Method (LBM) is applied to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a two-dimensional channel with a built-in triangular prism. Not only the momentum transport, but also the energy transport is modeled by LBM. A uniform lattice structure with a single time relaxation rule is used. The flow is investigated for different Reynolds numbers, while keeping the Prandtl number at a constant value of 0.7. The results show how the presence of a triangular prism affects the flow and heat transfer patterns for the steady-state and unsteady/periodic flow regimes. As an assessment of the accuracy of the developed LBM code, the results are compared with those obtained by a commercial CFD code. It is observed that the present LBM code delivers results that are of similar accuracy to the well-established CFD code.


Articles with similar content:

AUGMENTATION OF HEAT TRANSFER IN A CHANNEL USING A TRIANGULAR PRISM WITH VARYING INLET TURBULENT INTENSITY
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Sudhir Murmu, Himadri Chattopadhyay
MIXED CONVECTION OF NANOFLUID OVER A BACKWARD FACING STEP UNDER THE EFFECTS OF A TRIANGULAR OBSTACLE AND INCLINED MAGNETIC FIELD
Computational Thermal Sciences: An International Journal, Vol.10, 2018, issue 6
Hakan F. Öztop, Fatih Selimefendigil
A 3D Lattice Boltzmann Method for Simulation of Fluid Flow in Porous Media
International Journal of Fluid Mechanics Research, Vol.41, 2014, issue 3
Mehrdad Naderi Beni, Ahmad Reza Rahmati
ICING STUDY OF SUPER COOLED WATER DROPLET IMPINGING ON AIRFOIL USING E-MPS METHODD
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.20, 2018, issue
Daiki Toba, Naoya Fukushima, Hiroya Mamori, Makoto Yamamoto
Criterion for Local Thermal Equilibrium in Forced Convection Flow Through Porous Media
Journal of Porous Media, Vol.12, 2009, issue 11
Zhichun Liu, Xuewei Zhang, Wei Liu