Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Heat Transfer Research
Facteur d'impact: 0.404 Facteur d'impact sur 5 ans: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimer: 1064-2285
ISSN En ligne: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016008224
pages 575-595

NUMERICAL INVESTIGATION OF COMBINED PARALLEL TWO SHELL-PASS SHELL-AND-TUBE HEAT EXCHANGERS WITH CONTINUOUS HELICAL BAFFLES

Jian-Feng Yang
Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Qiu-Wang Wang
Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
Min Zeng
Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China

RÉSUMÉ

A combined parallel two shell-pass shell-and-tube heat exchanger with continuous helical baffles (CPTP-STHX) and an improved model (CPTP-STHX-improved) have been proposed to improve the heat transfer performance of shell-and-tube heat exchangers (STHXs). It is found that proportion of the mass flow rate of the inner shell pass to the total mass flow rate of the shell side is a constant. The heat transfer performance increases with the resistance of the inner shell pass. The CPTP-STHX-improved is compared with a conventional STHX with segmental baffles (SG-STHXs) by means of the computational fluid dynamic (CFD) method. The numerical results show that for the same mass flow rate m in the shell side, the heat transfer coefficient h, the overall pressure drop Δp, and the heat transfer coefficient per pressure drop h/Δp of the CPTP-STHX-improved are 41.1%, 34.5%, and 4.9% higher than those of the SG-STHX, respectively. For the same overall pressure drop in the shell side, the heat transfer coefficient of the CPTP-STHX-improved has 23.1% increases than that of the SG-STHX. Based on these results, it can be concluded that the CPTP-STHX-improved might be used to replace the conventional STHX with segmental baffles in industrial applications.


Articles with similar content:

EXPERIMENTAL AND NUMERICAL STUDIES ON SHELL-SIDE PERFORMANCE OF THREE DIFFERENT SHELL-AND-TUBE HEAT EXCHANGERS WITH HELICAL BAFFLES
Journal of Enhanced Heat Transfer, Vol.18, 2011, issue 5
Gui-Dong Chen, Qiu-Wang Wang, Min Zeng
FLOW AND HEAT TRANSFER CHARACTERISTICS OF A FIN-AND-TUBE HEAT EXCHANGER WITH WAVY RIB INSERTS
Journal of Enhanced Heat Transfer, Vol.23, 2016, issue 6
Yongping Yang, Xiaoze Du, Li Li, Lijun Yang, Gaosheng Wei
EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT IN A PLATE FIN HEAT EXCHANGER USING RECTANGULAR TYPE WINGLETS
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Ganesh Bhoge, Sunil B. Ingole
DESIGN AND PERFORMANCE EVALUATION OF AIR SOLAR CHANNELS WITH DIVERSE BAFFLE STRUCTURES
Computational Thermal Sciences: An International Journal, Vol.10, 2018, issue 3
Younes Menni, Ahmed Azzi
Effect of cross-cut on heat transfer performance and pressure drop in wavy fin
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Seo Young Kim, Gwang Hoon Rhee, Gun Woo Kim, Hyun Muk Lim