Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.061 Facteur d'impact sur 5 ans: 1.151 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v16.i6.60
pages 547-557

PREDICTION OF THE RETENTION VOLUME OF SEDIMENT DURING WATER-BASED SEDIMENT INJECTION

Narong Touch
Department of Civil and Environmental Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
Tadashi Hibino
Department of Civil and Environmental Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima City, Hiroshima 739-8527, Japan

RÉSUMÉ

The aim of this study is to propose a model for describing the pressure changes due to the retention of sediment (organic matter adsorbed on fines, diameter range 1−100 µm) inside saturated sand beds. Such model makes it possible to predict the retention volume of sediment, which is useful for considering the biodiversity of tidal flats. On the basis of Poiseuille's law and the hydraulic radius concepts, two models could theoretically be proposed to predict the pressure drop in the absence or presence of sediment retention. From one of the proposed models, the retention volume of sediment is determined, and is verified by comparing the predictions with experimental data. It was found that the friction coefficient determined based on the proposed model was in good agreement with that determined from the measured pressure drop, suggesting that the measured pressure drop can be reproduced by the proposed model. Moreover, the retention volume predicted by the proposed model well matches the measured retention weight. It was found that the properties of organic matter bonded onto sediment particles strongly affected the retention behavior of sediment. Sediment that is absorbed by decomposed organic matter travels more easily through sand beds, resulting in a low reduction of permeability.


Articles with similar content:

DETERMINATION OF NON-DARCY FLOW BEHAVIOR IN A TIGHT FORMATION
Journal of Porous Media, Vol.19, 2016, issue 8
Zhengming Yang, Yu Shi, Daoyong Yang
A STUDY OF CONFIGURATIONS OF CLAY-GLASS BEADS MIXTURE TO DETERMINE THE INFLUENCE OF COMPOSITION AND COMPACTION PRESSURE ON THE RETENTION OF NITRATE
Journal of Porous Media, Vol.16, 2013, issue 12
Peter G. Oduor, Anthony W. Wamono
ON THE ROBUSTNESS OF STRUCTURAL RISK OPTIMIZATION WITH RESPECT TO EPISTEMIC UNCERTAINTIES
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 1
W. J. S. Gomes, F. A. V. Bazan, Andre T. Beck
SIMULATION OF SPONTANEOUS IMBIBITION PROCESS IN TIGHT POROUS MEDIA WITH COMPLEX DISCRETE FRACTURE NETWORK
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 4
Junchao Li, Shujun Li, Zhengdong Lei, Changbing Tian
INVASION OF PRESSURIZED CLAY SUSPENSIONS INTO GRANULAR SOIL
Journal of Porous Media, Vol.16, 2013, issue 4
D. R. Mastbergen, M. Huisman, A. M. Talmon