Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.49 Facteur d'impact sur 5 ans: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v18.i7.50
pages 699-716

CONJUGATE NATURAL CONVECTION IN A DIFFERENTIALLY HEATED COMPOSITE ENCLOSURE FILLED WITH A NANOFLUID

Muneer A. Ismael
Mechanical Engineering Department, Engineering College, University of Basrah, Basrah 61004, Iraq
Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021

RÉSUMÉ

Laminar natural convection inside a square composite vertically layered cavity is studied numerically using under a successive relaxation (USR) upwind-scheme finite difference method. The cavity is set up as follows from the left: a solid wall, a porous layer, and a nanofluid layer. The porous layer is saturated with the same nanofluid. The cavity is heated isothermally from the solid wall and cooled from the right wall. The top and bottom walls are kept adiabatic. All the walls are assumed impermeable, except the interface between the porous and nanofluid layers. The Darcy−Brinkman model is invoked for the porous layer. Double-domain formulation is followed for the porous and nanofluid layers. The studied parameters are Darcy number Da (10−7−10−1), Rayleigh number Ra (103−106), wall thermal conductivity kw (0.269, 14.589 W/m.°C), thicknesses of layers Ww (0.1−0.7), Wp (0.1−0.5), and the Cu nanoparticle volume fraction φ (0.0−0.05). Alternative models for the nanofluid thermal conductivity and dynamic viscosity are used, and a comparison among different models combinations is conducted. The results show that the enhancement of natural convection is attained when the permeability (Da) of the porous medium is very low and the porous layer thickness is greater than 0.5, provided that the Rayleigh number is less than or equal to 104. The solid wall type is found to play a considerable role in the flow and heat transfer fields. It is also found that the conduction heat transfer within the solid wall is affected by the permeability of the porous layer.


Articles with similar content:

EFFECTS OF VARIABLE TEMPERATURE ON MIXED CONVECTION OF A CU-WATER NANOFLUID IN A DOUBLE-LID-DRIVEN POROUS ENCLOSURE WITH ACTIVE MIDDLE VERTICAL WALL
Journal of Porous Media, Vol.22, 2019, issue 4
N. Nithyadevi, Hakan F. Öztop, A. Shamadhani Begum, Nidal Abu-Hamdeh
NUMERICAL STUDY ON THE EFFECT OF MAGNETIC FIELD IN A POROUS ENCLOSURE USING NANOFLUID WITH MID-HORIZONTAL MOVING LID: BRINKMAN-FORCHHEIMER EXTENDED DARCY MODEL
Journal of Porous Media, Vol.21, 2018, issue 5
N. Nithyadevi, A. Shamadhani Begum
NATURAL CONVECTION IN A PARTIALLY OPEN-ENDED POROUS SQUARE CAVITY
Journal of Porous Media, Vol.17, 2014, issue 7
Habibis Saleh, Ahmad Fudholi, Ishak Hashim
CONTROL OF HEAT TRANSFER AND FLUID FLOW VIA A MOVING FIN IN A TRIANGULAR ENCLOSURE FILLED WITH NANOFLUID
Heat Transfer Research, Vol.50, 2019, issue 2
Borjini Mohamed Naceur, Hakan F. Öztop, Abdelkarim Aydi, Abdullah A. A. A. Al-Rashed, Nidal Abu-Hamdeh, Lioua Kolsi
CONJUGATE MIXED CONVECTION HEAT TRANSFER IN A LID-DRIVEN CAVITY PARTIALLY OCCUPIED BY A VERTICAL OR HORIZONTAL POROUS MEDIUM
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2014, issue
Abdeslam Omara, Said Abboudi, Abderrahim Bourouis