Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.49 Facteur d'impact sur 5 ans: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v17.i7.10
pages 563-572

NATURAL CONVECTION IN A PARTIALLY OPEN-ENDED POROUS SQUARE CAVITY

Habibis Saleh
School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia
Ahmad Fudholi
Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Ishak Hashim
School of Mathematical Sciences & Solar Energy Research Institute, Faculty of Science & Technology, Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor DE, Malaysia

RÉSUMÉ

Natural convective heat transfer in an open-ended porous square cavity is studied numerically in the present article. The left surface has a constant temperature and the right surface is a partial opening to the ambient, permitting air to flow inside the cavity by virtue of buoyancy, while the outer surfaces are all insulated. The Forchheimer-Brinkman-extended Darcy model is used in the mathematical formulation for the porous layer, and the COMSOL Multiphysics software 4.1 is applied to solve the dimensionless governing equations. P2−P1 lagrange elements and Galerkin least-square are used to assure the stability. The governing parameters considered are the aperture size, 0.3 ≤ H ≤ 1, the thermal conductivity ratio of solid matrix to fluid (1 ≤ ks/kf ≤ 20), the porosity of porous medium, 0.4 ≤ ε ≤ 0.99, and the Rayleigh number, 103 ≤ Ra ≤ 106. The results are presented to show the effect of these parameters on the fluid flow and heat transfer characteristics. It is found that the strength of the flow circulation and heat transfer rate are much higher for a larger opening. It is also found that the heat transfer enhancement by increasing the opening can be scaled directly from the porosity value.


Articles with similar content:

ANALYSIS OF CONVECTIVE HEAT TRANSFER IN A SQUARE CAVITY FILLED WITH A POROUS MEDIUM UNDER A MAGNETIC FIELD
Special Topics & Reviews in Porous Media: An International Journal, Vol.2, 2011, issue 3
M. Sathiyamoorthy
MIXED CONVECTION HEAT TRANSFER FLOW OF AIR INSIDE A SINUSOIDAL CORRUGATED CAVITY WITH A HEAT-CONDUCTING HORIZONTAL CIRCULAR CYLINDER
Journal of Enhanced Heat Transfer, Vol.18, 2011, issue 5
Salam Hadi Hussain, Qusay Rashid Abd-Amer
EFFECT OF THIN FIN ON NON-DARCY BUOYANCY FLOW IN A SQUARE CAVITY FILLED WITH POROUS MEDIUM
Journal of Porous Media, Vol.14, 2011, issue 11
S. Narasimman, M. Sathiyamoorthy
Mixed Convection of Water-Based Nanofluids in a Lid-Driven Square Enclosure with a Heat Source
Heat Transfer Research, Vol.42, 2011, issue 8
Kamil Kahveci, Elif Buyuk Ogut
NON-DARCY AND LOCALIZED HEATING EFFECTS ON BENARD CONVECTION IN POROUS ENCLOSURE
Journal of Porous Media, Vol.16, 2013, issue 1
Habibis Saleh, Ishak Hashim