Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.752 Facteur d'impact sur 5 ans: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v14.i5.30
pages 395-409

INVESTIGATING ROCK-FACE BOUNDARY EFFECTS ON CAPILLARY PRESSURE AND RELATIVE PERMEABILITY MEASUREMENTS

O. A. Al-Omair
Department of Petroleum Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
S. M. Al-Mudhhi
Department of Petroleum Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
M. M. Al-Dousari
Department of Petroleum Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

RÉSUMÉ

This paper covers the experimental study of water-gas capillary pressure and relative permeability in laboratory scale using the centrifuge spinning disk method to investigate the rock-face boundary effects. The capillary pressure wetting-phase saturation data were first generated using both the centrifuge spinning disk setup and the porous plate setup for the same samples. These measurements are performed to validate the accuracy of the centrifuge spinning disk method. Using the measured capillary pressure data, relative permeability relationships were estimated for each sample by history-matching production and saturation distribution data. The production data was monitored for each disk-shaped rock sample using two different experimental conditions—one by sealing the top and bottom faces of the sample and the other without sealing the rock faces. This is done to investigate the effects of sealing the tested samples on the measured data and ultimately on the relative permeability. Results show that the measured capillary pressure data generated using the spinning disk method are in agreement with the capillary pressure data generated with the porous plate method. Results also showed that the gas and brine relative permeabilities are independent of the rock sealing conditions. The average variation between the two methods used was in the order of 2% with a standard deviation of 2.2%. Capillary pressure data measured using cases with unsealed boundaries were practically a reproduction of capillary pressure data for the same core samples with sealed boundaries. The average variation between these methods was approximately 2.3% with a standard deviation of 2.6%. Capillary pressure and relative permeability are of great importance to petroleum engineers attempting to understand and predict the behavior of various petroleum recovery processes. Accurate determination of relative permeability data is essential for estimating the free water saturation, aiding in evaluating drill-stem and production tests, and estimating the residual saturations. This accuracy of the capillary pressure data and the precession of generated relative permeability data is a consequence of the refinement of the spinning disk setup. The improvement consists of modification of the core holder and adaptation of better lighting conditions. With this procedure, direct determination of capillary pressure saturation data is possible for the equilibrium saturation distribution.


Articles with similar content:

MATHEMATICAL MODEL FOR PREDICTION OF DYNAMIC RESERVES LOSS DUE TO WATER INVASION IN WATER-DRIVE GAS RESERVOIR
Journal of Porous Media, Vol.22, 2019, issue 12
Yingzhong Yuan, Zhilin Qi, Shilai Hu, Baosheng Liang, Nan Jiang, Jiqiang Li
NUMERICAL SIMULATION OF FREE FALL AND CONTROLLED GRAVITY DRAINAGE PROCESSES IN POROUS MEDIA
Journal of Porous Media, Vol.15, 2012, issue 3
Sohrab Zendehboudi, Maurice B. Dusseault, Ioannis Chatzis, Ali Shafiei
Asperity-Induced Episodic Percolation in Channels and Fractures
Journal of Porous Media, Vol.7, 2004, issue 3
Clifford K. Ho
COUPLED NUMERICAL SIMULATION OF FRACTURING MULTILAYER RESERVOIR FLOW WITH LEAN-STRATIFIED WATER INJECTION
Journal of Porous Media, Vol.21, 2018, issue 10
Shaoji Hou, Songqi Pan, Dapeng Gao, Yuewu Liu, Jigen Ye, Daigang Wang
ROCK TYPE DETERMINATION OF A CARBONATE RESERVOIR USING VARIOUS APPROACHES: A CASE STUDY
Special Topics & Reviews in Porous Media: An International Journal, Vol.2, 2011, issue 4
Paitoon Tontiwachwuthikul, Farshid Torabi, Ali Abedini