Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.061 Facteur d'impact sur 5 ans: 1.151 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v11.i8.50
pages 765-778

Use of He's Homotopy Perturbation Method for Solving a Partial Differential Equation Arising in Modeling of Flow in Porous Media

Mehdi Dehghan
Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran 15914, Iran
Fatemeh Shakeri
Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran 15914, Iran

RÉSUMÉ

The Boussinesq-type equations serve as models in many branches of science and engineering. Recently, much attention has been expended in studying these equations, and there has been a considerable mathematical interest in them. In this work, we present the solution of a generalized Boussinesq equation by means of the homotopy perturbation method. The homotopy perturbation method is an analytical procedure for finding the solutions of differential equations that is based on constructing a homotopy with an imbedding parameter p ∈ [0,1], which is considered to be a so-called small parameter. Application of the homotopy perturbation technique to this problem shows the rapid convergence of this method to the exact solution. The approximations obtained by the proposed method are uniformly valid not only for small parameters, but also for very large parameters. Moreover, this technique does not require any discretization, linearization, or small perturbations and therefore reduces the numerical computations by a great deal.


Articles with similar content:

ON AN INTEGRAL METHOD APPLIED TO THE RESOLUTION OF CERTAIN PROBLEMS IN FLUID MECHANICS (NATURAL CONVECTION WITH OR WITHOUT VOLUMETRIC HEAT SOURCE)
International Heat Transfer Conference 7, Vol.3, 1982, issue
M.N. Sabry
NEW EXPLICIT METHODS FOR THE NUMERICAL SOLUTION OF DIFFUSION PROBLEMS
Annual Review of Heat Transfer, Vol.1, 1987, issue 1
David J. Evans
The Three-Step Strong Numerical Methods of the Orders of Accuracy 1.0 and 1.5 for Ito Stochastic Differential Equations
Journal of Automation and Information Sciences, Vol.34, 2002, issue 12
Dmitriy F. Kuznetsov
Numerical Approach to Parametric Identification of Dynamical Systems
Journal of Automation and Information Sciences, Vol.46, 2014, issue 3
Vagif Maarif oglu Abdullayev, Kamil Rajab ogly Aida-zade
SOLUTIONS FOR COUNTERCURRENT SPONTANEOUS IMBIBITION AS DERIVED BY MEANS OF A SIMILARITY APPROACH
Journal of Porous Media, Vol.18, 2015, issue 2
Geoffrey Mason, Rasoul Arabjamaloei, Douglas W. Ruth, Norman R. Morrow