Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.49 Facteur d'impact sur 5 ans: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019025664
pages 1015-1025

MASS TRANSPIRATION IN MAGNETO-HYDRODYNAMIC BOUNDARY LAYER FLOW OVER A SUPERLINEAR STRETCHING SHEET EMBEDDED IN POROUS MEDIUM WITH SLIP

P. N. Vinay Kumar
Department of Mathematics, SHDD Government First Grade College, Paduvalahippe, Hassan – 573211, India
U. S. Mahabaleshwar
Department of Mathematics, Davangere University, Shivagangotri, Davangere – 577007, India
K. R. Nagaraju
Department of Mathematics, Government Engineering College, Hassan, India
Mohaddeseh Mousavi Nezhad
Civil Research Group, School of Engineering, University of Warwick, Coventry, UK
A. Daneshkhah
School of Computing, Electronics and Mathematics, Coventry University, Coventry, UK

RÉSUMÉ

We have studied mass transpiration of a magneto-hydrodynamic (MHD) flow of a Newtonian fluid over a superlinear stretching sheet embedded in a porous medium. A model was created of a nonlinear system of partial differential equations that are transformed into third-order nonlinear ordinary differential equations via similarity transformations and then solved analytically using differential transform method and Pade approximants. The main focus of the present study is on the effect of Navier's slip boundary condition on flow behavior. A comprehensive study is presented on the effects of various parameters, such as Navier's slip condition, mass transpiration (suction/injection), and Darcy number on the axial and transverse velocity profiles of the laminar boundary layer flow through the stretching sheet.

RÉFÉRENCES

  1. Ali, M.E., On Thermal Boundary Layer on a Power-Law Stretched Surface with Suction or Injection, Int. J. Heat Fluid Flow, vol. 16, pp. 280-290, 1995.

  2. Andersson, H.I., Slip Flow past a Stretching Surface, Acta Mech., vol. 158, pp. 121-125, 2002.

  3. Ariel, P.D., Hayat, T., and Asghar, S., The Flow of an Elastic-Viscous Fluid past a Stretching Sheet with Partial Slip, Acta Mech, vol. 187, pp. 29-35, 2006.

  4. Baker, G.A. and Morris, P.R.G., Pade Approximants: Basic Theory, New York: Addison-Wesley Publishing Company, 1981.

  5. Banks, W.H.H., Similarity Solutions of the Boundary Layer Equations for a Stretching Wall, J. Mech. Theor. Appl., vol. 2, pp. 375-392, 1983.

  6. Bervillier, C., Status of the Differential Transformation Method, Appl. Math. Comput, vol. 218, pp. 10158-10170, 2012.

  7. Blasius, H., Grenzschichten in Fliissigkeiten mit Kleiner Reibung, Zeits. f. Math. U. Phys., vol. 56, pp. 1-37, 1908.

  8. Chaim, T.C., Magnetohydrodynamic Heat Transfer over a Non-Isothermal Stretching Sheet, Acta Mech., vol. 122, pp. 169-179, 1997.

  9. Chen, C.K. and Char, M.I., Heat Transfer of a Continuous, Stretching Surface with Suction or Blowing, J. Math. Anal. Appl., vol. 135, pp. 568-580, 1988.

  10. Crane, L.J., Flow past a Stretching Plate, Zeits. f. Math. u. Phys., vol. 21, pp. 645-647, 1970.

  11. El-Dabe, N.T., Ghaly, A.Y., Rizkallah, R.R., Ewis, K.M., and Al-Bareda, A.S., Numerical Solution of MHD Boundary Layer Flow of Non-Newtonian Casson Fluid on a Moving Wedge with Heat and Mass Transfer and Induced Magnetic Field, J. Appl. Math. Phys, vol. 3, pp. 649-663,2015.

  12. Fisher, B.G., Extrusion of Plastics, London: Newnes-Butterworld, 1976.

  13. Gad-el-Hak, M., The Fluid Mechanics of Microdevices, ASMEJ. Fluids Eng., vol. 121, pp. 5-33,1999.

  14. Gupta, P.S. and Gupta, A.S., Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing, Can. J. Chem. Eng., vol. 55, pp. 744-746, 1977.

  15. Hamad, M.A.A., Analytical Solution of Natural Convection Flow of a Nanofluid over a Linearly Stretching Sheet in the Presence of Magnetic Field, Int. Commun. Heat Mass Transf., vol. 38, pp. 487-492, 2011.

  16. Ingham, D.B. and Pop, I., Transport in Porous Media, Oxford: Pergamon, 2002.

  17. Kaviany, M., Principles ofHeat Transfer in Porous Media, New York: Springer, 1991.

  18. Kumar Ranjith, S., Patnaik, B.S.V., and Vedanta, S., No-Slip Boundary Condition in Finite-Size Dissipative Particle Dynamics, J. Comput. Phys, vol. 232, no. 1, pp. 174-188, 2013.

  19. Magyari, E. and Keller, B., Heat and Mass Transfer in the Boundary Layers on an Exponentially Stretching Continuous Surface, J Phys. D: Appl. Phys.., vol. 32, pp. 577-585, 1999.

  20. Mahabaleshwar, U.S., Effect of Partial Slip Viscous Flow over a Stretching Sheet with Suction/Injection in a Porous Medium, in Porous Media, New York: NOVA Science Publishers, pp. 165-179,2016.

  21. Mahabaleshwar, U.S., Nagaraju, K.R., Vinay Kumar, P.N., Baleanu, D., and Lorenzini, G., An Exact Analytical Solution of the Unsteady Magnetohydrodynamics Nonlinear Dynamics of Laminar Boundary Layer due to an Impulsively Linear Stretching Sheet, Continuum Mech. Therm., vol. 29, no. 2, pp. 559-567, 2017.

  22. Navier, C.L.M.H., Memoiresur les Lois du Mouvement des Fluids, Mem. Acad. R. Sci. Inst. France, vol. 6, pp. 389-440, 1823.

  23. Nield, D.A. and Bejan, A., Convection in Porous Media, 4th Edition, New York: Springer, 2013.

  24. Pavlov, K.B., Magnetohydrodynamic Flow of an Incompressible Viscous Liquid Caused by Deformation of Plane Surface, Magnitnaya Gidrodinamica, vol. 4, pp. 146-147, 1974.

  25. Pop, I. and Cheng, P., Flow past a Circular Cylinder Embedded in a Porous Medium based on the Brinkman Model, Int. J. Eng. Sci, vol. 30, pp. 257-262, 1992.

  26. Pop, I. and Ingham, D.B., Flow past a Sphere Embedded in a Porous Medium based on the Brinkman Model, Int. Commun. Heat Mass Transf., vol. 23, pp. 865-874, 1996.

  27. Rashidi, M.M., Differential Transform Method for MHD Boundary-Layer Equations: Combination of the DTM and the Pade Approximant, Int. Conf. on Signal Processing Systems, Singapore, 2009.

  28. Sakiadis, B.C., Boundary Layer Behaviour on Continuous Solid Surfaces: I. Boundary Layer Equations for Two Dimensional and Axisymmetric Flow, AIChE J., vol. 7, pp. 26-28, 1961a.

  29. Sakiadis, B.C., Boundary Layer Behaviour on Continuous Solid Surfaces: II. Boundary Layer Behaviour on Continuous Flat Surfaces, AIChE J., vol. 7, pp. 221-225, 1961b.

  30. Siddheshwar, P.G., Chan, A., and Mahabaleshwar, U.S., Suction-Induced Magnetohydrodynamics of a Viscoelastic Fluid over a Stretching Surface within a Porous Medium, IMA J. Appl. Math., vol. 79, no. 3, pp. 445-458, 2014.

  31. Turkyilmazoglu, M., Effects of Partial Slip on the Analytic Heat and Mass Transfer for the Incompressible Viscous Fluid of a Porous Rotating Disk Flow, J. Heat Transf., vol. 133, pp. 122602-122605, 2011a.

  32. Turkyilmazoglu, M., Multiple Solutions of Heat and Mass Transfer of MHD Slip Flow for the Viscoelastic Fluid over a Stretching Sheet, Int. J. Therm. Sci., vol. 50,no. 11, pp. 2264-2276, 2011b.

  33. Urquiza, J.M., Garon, A., and Farinas, M.I., Weak Imposition of the Slip Boundary Condition on Curved Boundaries for Stokes Flow, J. Comput. Phys, vol. 256, pp. 748-767,2014.

  34. Vafai, K. and Tien, C.L., Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media, Int. J. Heat Mass Transf., vol. 24, pp. 195-203, 1981.

  35. Verhaeghe, F., Luo, L., and Blanpain, B., Lattice Boltzmann Modeling of Microchannel Flow in Slip Flow Regime, J. Comput. Phys, vol. 228, no. 1, pp. 147-157, 2009.

  36. Wang, C.Y., Flow due to a Stretching Boundary with Partial Slip - An Exact Solution oftheNavier-Stokes Equations, Chem. Eng. Sci., vol. 57, no. 17, pp. 3745-3747, 2002.

  37. Wang, C.Y., Darcy-Brinkman Flow with Solid Inclusions, Chem. Eng. Commun, vol. 197, pp. 261-274, 2010.

  38. Zhou, J.K., Differential Transformation and its Application for Electrical Circuits, China: Huazhong University Press, 1986.


Articles with similar content:

THE PULSATILE FLOW OF A BURGERS' FLUID AND HEAT TRANSFER THROUGH A POROUS MEDIUM IN A CIRCULAR PIPE
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 3
Sallam N. Sallam, Marwa M. Hussein, Nabil T. Mohamed El-Dabe, Ahmed A. A. Hassan
STUDY OF PARTIAL SLIP MECHANISM ON FREE CONVECTION FLOW OF VISCOELASTIC FLUID PAST A NONLINEARLY STRETCHING SURFACE
Computational Thermal Sciences: An International Journal, Vol.11, 2019, issue 1-2
A. Bhattacharyya, Manoj Kumar Mishra, Gauri S. Seth
HEAT AND MASS TRANSFER ANALYSIS OF UNSTEADY NON-NEWTONIAN FLUID FLOW BETWEEN POROUS SURFACES IN THE PRESENCE OF MAGNETIC NANOPARTICLES
Journal of Porous Media, Vol.20, 2017, issue 12
Muhammad Farooq Iqbal, M. Zubair Akbar Qureshi, Kashif Ali, M. Ashraf
THEMODIFFUSION EFFECTS ON MHD BOUNDARY LAYER SLIP FLOW OF NANOFLUID OVER A NONLINEAR STRETCHING SHEET THROUGH A POROUS MEDIUM
Journal of Porous Media, Vol.20, 2017, issue 11
R.V.M.S.S. Kiran Kumar, S. Vijaya Kumar Varma, P. Durga Prasad, V. Nagendramma, A. Leelaratnam
HEAT-TRANSFER ANALYSIS OF MHD FLOWDUE TO A PERMEABLE SHRINKING SHEET EMBEDDED IN A POROUS MEDIUM WITH INTERNAL HEAT GENERATION
Journal of Porous Media, Vol.13, 2010, issue 9
Muhaimin Ismoen, Noor Fadiya Mohd Noor, Ishak Hashim