Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.49 Facteur d'impact sur 5 ans: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019024580
pages 889-922

A REVIEW ON THE STUDY OF IMMISCIBLE FLUID FLOW IN UNSATURATED POROUS MEDIA: MODELING AND REMEDIATION

A. V. Praseeja
Civil Engineering Department, Government Engineering College Trichur, Kerala, India
N. Sajikumar
Civil Engineering Department, Government Engineering College Trichur, Kerala, India

RÉSUMÉ

Groundwater resources have been polluted by many sources. Among them, spillages of oil and similar petroleum products now become a common experience worldwide. This nonaqueous phase liquid (NAPL) can easily migrate downward through the unsaturated (vadose) zone and become widely distributed in the water table. Therefore, it is important to develop a methodology for monitoring and analyzing the movement of these contaminants through the vadose zone for the effective design of remediation schemes. This review discusses the equations involved in the numerical simulation of multiphase flow and the recent development of various multiphase models. In addition, this study emphasizes the advancement of laboratory works using image analysis techniques. Overall, this study reviews the important features and limitations of existing remediation methods and highlights the applicability of natural fibers for the development of a sustainable cleanup technology against oil spill problems.

RÉFÉRENCES

  1. Abbasi, J., Ghaedi, M., and Riazi, M., A New Numerical Approach for Investigation of the Effects of Dynamic Capillary Pressure in Imbibition Process, J. Pet. Sci. Technol., vol. 162, pp. 44-54, 2018.

  2. Abidoye, L.K. and Das, D.B., Scale Dependent Dynamic Capillary Pressure Effect for Two-Phase Flow in Porous Media, Adv. WaterResour., vol. 74, pp. 212-230, 2014.

  3. Abriola, L.M. and Pinder, G.F., A Multiphase Approach to the Modelling of Porous Media Contamination by Organic Compounds: 1. Equation Development, Water Resour. Res., vol. 21, no. 1, pp. 11-18, 1985.

  4. Adebajo, M.O., Frost, R.L., Kloprogge, J.T., Carmody, O., and Kokot, S., Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties, J. Porous Mater, vol. 10, no. 3, pp. 159-170, 2003.

  5. Alazaiza, M.Y., Ngien, S.K., Ishak, W.M.F., and Kamaruddin, S.A., A Review of Light Reflection and Transmission Methods in Monitoring Non-Aqueous Phase Liquid Migration in Porous Media, APRNJ. Eng. Appl. Sci, vol. 11, no. 4, pp. 19-26,2016.

  6. Ali, N., El-Harbawi, M., Jabal, A.A., and Yin, C.Y., Characteristics and Oil Sorption Effectiveness of Kapok Fibre, Sugarcane Bagasse and Rice Husks: Oil Removal Suitability Matrix, Environ. Technol., vol. 33, no. 4, pp. 481-486, 2012.

  7. Al-Majed, A.A., Adebayo, A.R., and Hossain, M.E., A Sustainable Approach to Controlling Oil Spills, J. Environ. Man., vol. 113, pp. 213-227, 2012.

  8. Al-Rashed, M., Mukhopadhyay, A., Al-Senafy, M., Ghoneim, H., and Abbas, A., Contamination of Groundwater from Oil Field Water Disposal Pits in Kuwait, Arab. J. Sci. Eng., vol. 35, no. 1, pp. 105-123, 2010.

  9. Appelo, C.A.J. and Rolle, M., PHT3D: A Reactive Multicomponent Transport Model for Saturated Porous Media, Groundwater, vol. 48, no. 5, pp. 627-632, 2010.

  10. ASTM, Standard Guide for Development of Conceptual Site Models and Remediation Strategies for Light Nonaqueous-Phase Liquids Released to the Subsurface, Paper No. ASTME 2531-06, 2007.

  11. Bahar, T., Golfier, F., Oltean, C., Lefevre, E., and Lorgeoux, C., Comparison of Theory and Experiment forNAPL Dissolution in Porous Media, J Contam. Hydrol., vol. 211, pp. 49-64, 2018.

  12. Bailey, R.T., Morway, E.D., Niswonger, R.G., and Gates, T.K., Modeling Variably Saturated Multispecies Reactive Groundwater Solute Transport with MODFLOW-UZF and RT3D, Groundwater, vol. 51, no. 5, pp. 752-761, 2013.

  13. Beckett, G.D. and Huntley, D., Soil Properties and Design Factors Influencing Free-Phase Hydrocarbon Clean-Up, Environ. Sci. Technol., vol. 32, no. 2, pp. 287-293, 1998.

  14. Berlin, M., Vasudevan, M., Kumar, G.S., andNambi, I.M., Numerical Modelling of Fate and Transport of Petroleum Hydrocarbons in an Unsaturated Subsurface System for Varying Source Scenario, J. Earth Syst. Sci., vol. 124, no. 3, pp. 655-674, 2015.

  15. Bob, M.M., Brooks, M.C., Mravik, S.C., and Wood, A.L., A Modified Light Transmission Visualization Method for DNAPL Saturation Measurements in 2-D Models, Adv. Water Res., vol. 31, no. 5, pp. 727-742, 2008.

  16. Borden, R.C. and Kao, C.M., Evaluation of Groundwater Extraction for Remediation of Petroleum-Contaminated Aquifers, Water Environ. Res., vol. 64, no. 1, pp. 28-36, 1992.

  17. Bour, O., Rollin, C., Baroudi, H., Garcia, M., Emonet, A., Bues, M.A., Le Thiez, P., Blondel, T., Schwartz, J., Slimane, F.B., and Guyonnet, D., Modeling of PAH Transport in Soils and Groundwater, Proc. of 8th Int. FZK/TNO Conf. on Contaminated Soil, pp. 803-809, 2003.

  18. Bouwer, H., Simple Derivation of the Retardation Equation and Application to Preferential Flow and Macrodispersion, Groundwater, vol. 29, no. 1, pp. 41-46, 1991.

  19. Butts, M.B. and Jensen, K.H., Effective Parameters for Multiphase Flow in Layered Soils, J. Hydrol., vol. 183, no. 1, pp. 101-116, 1996.

  20. Chevalier, L.R. and Petersen, J., Literature Review of 2-D Laboratory Experiments in NAPL Flow, Transport, and Remediation, J. Soil Contam., vol. 8, no. 1, pp. 149-167, 1999.

  21. Chrysikopoulos, C.V., Kitanidis, P.K., and Roberts, P.V., Analysis of One-Dimensional Solute Transport through Porous Media with Spatially Variable Retardation Factor, Water Resour. Res., vol. 26, no. 3, pp. 437-446, 1990.

  22. Clement, T.P., Gautam, T.R., Lee, K.K., Truex, M.J., and Davis, G.B., Modeling of DNAPL-Dissolution, Rate-Limited Sorption and Biodegradation Reactions in Groundwater Systems, Bioremed. J, vol. 8, nos. 1-2, pp. 47-64, 2004.

  23. Clement, T.P., A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Systems, Pacific Northwest National Laboratory Rep. No. 11720, 1997.

  24. Coles, C.A., Estimating Retardation from the Freundlich Isotherm for Modeling Contaminant Transport, Eng. Geol., vol. 87, pp. 35-40, 2007.

  25. Corapcioglu, M.Y. and Panday, S., Compositional Multiphase Flow Models, J. Adv. Porous Media, vol. 1, pp. 1-59, 1991.

  26. Das, D.B., Hassanizadeh, S.M., Rotter, B.E., and Ataie-Ashtiani, B., A Numerical Study of Micro-Heterogeneity Effects on Up-scaled Properties of Two-Phase Flow in Porous Media, Transp. Porous Media, vol. 56, no. 3, pp. 329-350, 2004.

  27. Das, D.B. and Mirzaei, M., Dynamic Effects in Capillary Pressure Relationships for Two-Phase Flow in Porous Media: Experiments and Numerical Analyses, AIChEJ., vol. 58, no. 12, pp. 3891-3903, 2012.

  28. Das, D.B., Thirakulchaya, T., Deka, L., and Hanspal, N.S., Artificial Neural Network to Determine Dynamic Effect in Capillary Pressure Relationship for Two-Phase Flow in Porous Media with Micro-Heterogeneities, Environ. Processes, vol. 2, no. 1, pp. 1-18,2015.

  29. Fagerlund, F., Illangasekare, T.H., and Niemi, A., Nonaqueous-Phase Liquid Infiltration and Immobilization in Heterogeneous Media: 1. Experimental Methods and Two-Layered Reference Case, Vadose Zone J., vol. 6, no. 3, pp. 471-482, 2007.

  30. Fagerlund, F. and Niemi, A., A Partially Coupled, Fraction-by-Fraction Modelling Approach to the Subsurface Migration of Gasoline Spills, J. Contam. Hydrol, vol. 89, no. 3, pp. 174-198,2007.

  31. Fagerlund, F., Niemi, A., and Illangasekare, T.H., Modeling of Nonaqueous Phase Liquid (NAPL) Migration in Heterogeneous Saturated Media: Effects of Hysteresis and Fluid Immobility in Constitutive Relations, Water Resour. Res., vol. 44, no. 3, pp. 1-18,2008.

  32. Fagerlund, F.F., Niemi, A., and Oden, M., Comparison of Relative Permeability-Fluid Saturation-Capillary Pressure Relations in the Modelling of Non-Aqueous Phase Liquid Infiltration in Variably Saturated, Layered Media, Adv. Water Resour., vol. 29, no. 11, pp. 1705-1730,2006.

  33. Falta, R.W., Pruess, K., Javandel, I., and Witherspoon, P. A., Numerical Modeling of Steam Injection for the Removal of Nonaqueous Phase Liquids from the Subsurface: 1. Numerical Formulation, Water Resour. Res., vol. 28, no. 2, pp. 433-449,1992.

  34. Farr, A.M., Houghtalen, R.J., and McWhorter, D.B., Volume Estimation of Light Non-Aqueous Phase Liquids in Porous Media, Groundwater, vol. 28, no. 1, pp. 48-56,1990.

  35. Faust, C.R., Transport of Immiscible Fluids within and below the Unsaturated Zone: A Numerical Model, Water Resour. Res., vol. 21, no. 4, pp. 587-596, 1985.

  36. Frollini, E., Piscitelli, D., Verginelli, I., Baciocchi, R., and Petitta, M., A Methodological Approach to Assess the Dissolution of Residual LNAPL in Saturated Porous Media and Its Effect on Groundwater Quality: Preliminary Experimental Results, Water Air Soil Pollution, vol. 227, no. 10, pp. 379(1-11), 2016.

  37. Guarnaccia, J., Pinder, G., and Fishman, M., NAPL: Simulator Documentation, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research and Devevelopment, 1997.

  38. Hanspal, N.S., Allison, B.A., Deka, L., and Das, D.B., Artificial Neural Network (ANN) Modeling of Dynamic Effects on Two-Phase Flow in Homogenous Porous Media, J. Hydroinf., vol. 15, no. 2, pp. 540-554, 2013.

  39. Harbaugh, A.W., MODFLOW-2005, US Geological Survey Modular Ground-Water Model: The Groundwater Flow Process (pp. 6-A16), US Department of the Interior, US Geological Survey, Reston, VA, 2005.

  40. Helmig, R., Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modelling of Hydrosystems, Berlin: Springer-Verlag, 1997.

  41. Hochmuth, D.P. and Sunada, D.K., Ground-Water Model of Two-Phase Immiscible Flow in Coarse Material, Groundwater, vol. 23, no. 5, pp. 617-626, 1985.

  42. Host-Madsen, J. and Jensen, K.H., Laboratory and Numerical Investigations of Immiscible Multiphase Flow in Soil, J. Hydrol., vol. 135, no. 1,pp. 13-52, 1992.

  43. Hou, L., Sleep, B.E., and Kibbey, T.C., The Influence of Unavoidable Saturation Averaging on the Experimental Measurement of Dynamic Capillary Effects: A Numerical Simulation Study, Adv. Water Resour., vol. 66, pp. 43-51, 2014.

  44. Hubbe, M.A., Rojas, O.J., Fingas, M., and Gupta, B.S., Cellulosic Substrates for Removal of Pollutants from Aqueous Systems: A Review. 3. Spilled Oil and Emulsified Organic Liquids, Bio Resour., vol. 8, no. 2, pp. 3038-3097,2013.

  45. Huyakorn, P.S. and Pinder, G.F., A New Finite Element Technique for the Solution of Two-Phase Flow through Porous Media, AdK Water Resour, vol. 1, no. 5, pp. 285-298, 1978.

  46. Huyakorn, P.S., Panday, S., and Wu, Y.S., A Three-Dimensional Multiphase Flow Model for Assessing NAPL Contamination in Porous and Fractured Media, 1. Formulation, J. Contam. Hydrol., vol. 16, no. 2, pp. 109-130,1994.

  47. Huyakorn, P.S., Wu, Y.S., and Panday, S., A Comprehensive Three-Dimensional Numerical Model for Predicting the Transport and Fate of Petroleum Hydrocarbons in the Subsurface, Proc. of Conf. on Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Restoration, Houston, 1992.

  48. Illangasekare, T.H., Armbruster III, E.J., and Yates, D.N., Non-Aqueous-Phase Fluids in Heterogeneous Aquifers-Experimental Study, J. Environ. Eng., vol. 121, no. 8, pp. 571-579,1995.

  49. Jaeger, S., Ehni, M., Eberhardt, C., Rolle, M., Grathwohl, P., and Gauglitz, G., CCD Camera Image Analysis for Mapping Solute Concentrations in Saturated Porous Media, Anal. Bioanal. Chem., vol. 395, no. 6, pp. 1867-1876, 2009.

  50. Johnson, R.L., Keely, J.F., and Palmer, C.D., Transport and Fate of Contaminants in the Subsurface, US Environmental Protection Agency Rep. EPA/625/4-89/019, 1989.

  51. Kaluarachchi, J.J. and Parker, J.C., An Efficient Finite Element Method for Modelling Multiphase Flow, Water Resour. Res., vol. 25, no. 1,pp. 43-54,1989.

  52. Kaluarachchi, J.J., Parker, J.C., and Lenhard, R.J., A Numerical Model for Areal Migration of Water and Light Hydrocarbon in Unconfined Aquifers, Water Resour. Res., vol. 13, no. 1, pp. 29-40,1990.

  53. Kamaruddin, S., Sulaiman, W.N.A., Rahman, N.A., Zakaria, M.P., Mustaffa, M., and Sa'ari, R., A Review of Laboratory and Numerical Simulations of Hydrocarbons Migrations in Subsurface Environments, J. Environ. Sci. Technol., vol. 4, no. 3, pp. 191-214,2011.

  54. Karan, C.P., Rengasamy, R.S., and Das, D., Oil Spill Cleanup by Structured Fibre Assembly, Indian J. Fibre Text. Res., vol. 36, no. 2, pp. 190-200,2011.

  55. Karapanagioti, H.K., Gaganis, P., and Burganos, V.N., Modeling Attenuation of Volatile Organic Mixtures in the Unsaturated Zone: Codes and Usage, Environ. Model. Software, vol. 18, no. 4, pp. 329-337, 2003.

  56. Kashuk, S., Mercurio, S.R., and Iskander, M., Visualization of Dyed NAPL Concentration in Transparent Porous Media Using Colour Space Components, J. Contam. Hydrol, vol. 162, pp. 1-16, 2014.

  57. Katyal, A.K., Kaluarachchi, J.J., and Parker, J.C., MOFAT: A Two-Dimensional Finite-Element Program for Multiphase Flow and Multicomponent Transport, Program Documentation and User's Guide (No. PB-91-191692/XAB), Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States), Center for Environmental and Hazardous Material Studies, 1991.

  58. Kechavarzi, C., Soga, K., and Wiart, P., Multispectral Image Analysis Method to Determine Dynamic Fluid Saturation Distribution in Two-Dimensional Three-Fluid Phase Flow Laboratory Experiments, J. Contam. Hydrol., vol. 46, no. 3, pp. 265-293, 2000.

  59. Khan, F.I., Husain, T., andHejazi, R., An Overview and Analysis of Site Remediation Technologies, J. Environ. Man., vol. 71, no. 2, pp. 95-122, 2004.

  60. Kim, S.B. and Kim, D.J., Application of Generalized Contaminant Retardation Factor to a Multi-Phase System, Hydrol. Processes, vol. 17, no. 15, pp. 3059-3068,2003.

  61. Kueper, B.H. andFrind, E.O., Two-Phase Flow in Heterogeneous Porous Media: 1. Model Development, Water Resour. Res, vol. 27, no. 6, pp. 1049-1057,1991a.

  62. Kuiper, L.K. and Illangasekare, T.K., Numerical Simulation of NAPL Flow in the Subsurface, Comput. Geosci., vol. 2, no. 3, pp. 171-189, 1998.

  63. Lahvis, M.A. and Baehr, A.L., Documentation of R-UNSAT, a Computer Model for the Simulation of Reactive, Multispecies Transport in the Unsaturated Zone, USGS, 1998.

  64. Leake, S.A., Modeling Ground-Water Flow with MODFLOW and Related Programs, No. 121-97, US Dept. of the Interior, US Geological Survey, 1997.

  65. Lee, K.Y., Modeling Long-Term Transport of Contaminants Resulting from Dissolution of a Coal Tar Pool in Saturated Porous Media, J. Environ. Eng., vol. 130, no. 12, pp. 1507-1513,2004.

  66. Lemming, G., Hauschild, M.Z., and Bjerg, P.L., Life Cycle Assessment of Soil and Groundwater Remediation Technologies: Literature Review, Int. J. Life Cycle Assess., vol. 15, no. 1, p. 115-127, 2010.

  67. Lenhard, R.J. and Parker, J.C., Measurement and Prediction of Saturation-Pressure Relationships in Three-Phase Porous Media Systems, J. Contam. Hydrol, vol. 1, no. 4, pp. 407-424, 1987.

  68. Li, M.H., Wang, T.H., and Teng, S.P., Experimental and Numerical Investigations of the Effect of Column Length on Retardation Factor Determination: A Case Study of Caesium Transport in Crushed Granite, J. Hazard. Mater., vol. 162, no. 1, pp. 530-535, 2009.

  69. Li, T., Recovery of Source Non-Aqueous Phase Liquids from Groundwater Using Supersaturated Water Injection, MASc, University of Waterloo, Canada, 2004.

  70. Liang, Z., Zhenmin, M., and Qingguo, L., Study on Pollution Mechanism of Petroleum Contamination in a Groundwater System under a Refinery in Jinan City, 2009, ESIAT 2009. Int. Conf. on Environ. Sci. and Inform. App. Technol., vol. 2, pp. 106-108, July 2009.

  71. Liu, Y., Cheng, L., Ding, A., and Xu, J., Quick Assessment of Contamination Threat to Groundwater after NAPL Spill, 2010 4th Int. Conf. on Bioinformatics and Biomedical Engineering, pp. 1-4, June, 2010.

  72. Ma, L., Ahuja, L.R., Nolan, B.T., Malone, R.W., Trout, T. J., and Qi, Z., Root Zone Water Quality Model (RZWQM2): Model Use, Calibration, and Validation, Trans. ASABE, vol. 55, no. 4, pp. 1425-1446, 2012.

  73. Mackay, D.M., Freyberg, D.L., Roberts, P.V., and Cherry, J.A., A Natural Gradient Experiment on Solute Transport in a Sand Aquifer: 1. Approach and Overview of Plume Movement, Water Resour. Res., vol. 22, no. 13, pp. 2017-2029,1986.

  74. Mayer, K.U., Frind, E.O., and Blowes, D.W., Multicomponent Reactive Transport Modelling in Variably Saturated Porous Media Using a Generalized Formulation for Kinetically Controlled Reactions, Water Resour. Res., vol. 38, no. 9, pp. 13-1-13-21,2002.

  75. McNeil, J.D., Oldenborger, G.A., and Schincariol, R.A., Quantitative Imaging of Contaminant Distributions in Heterogeneous Porous Media Laboratory Experiments, J. Contam. Hydrol., vol. 84, no. 1, pp. 36-54, 2006.

  76. Mercer, J.W. and Cohen, R.M., A Review of Immiscible Fluids in the Subsurface: Properties, Models, Characterization and Re-mediation, J. Contam. Hydrol, vol. 6, no. 2, pp. 107-163, 1990.

  77. Mikolajkow, J., Laboratory Methods of Estimating the Retardation Factor of Migrating Mineral Nitrogen Compounds in Shallow Groundwater, Geol. Q., vol. 47, no. 1, pp. 91-96, 2010.

  78. Miller, C.T., Christakos, G., Imhoff, P.T., McBride, J.F., Pedit, J.A., and Trangenstein, J.A., Multiphase Flow and Transport Modelling in Heterogeneous Porous Media: Challenges and Approaches, Adv. Water Resour., vol. 21, no. 2, pp. 77-120, 1998.

  79. Mishra, S., Parker, J.C., and Singhal, N., Estimation of Soil Hydraulic Properties and Their Uncertainty from Particle Size Distribution Data, J. Hydrol, vol. 108, pp. 1-18, 1989.

  80. Morway, E.D., Niswonger, R.G., Langevin, C.D., Bailey, R.T., and Healy, R.W., Modeling Variably Saturated Subsurface Solute Transport with MODFLOW-UZF and MT3DMS, Groundwater, vol. 51, no. 2, pp. 237-251, 2013.

  81. Mousavi Nezhad, M., Javadi, A.A., and Abbasi, F., Stochastic Finite Element Modelling of Water Flow in Variably Saturated Heterogeneous Soils, Int. J. Numer. Anal. Methods Geomech., vol. 35, no. 12, pp. 1389-1408, 2011.

  82. Mousavi Nezhad, M., Javadi, A.A., Al-Tabbaa, A., and Abbasi, F., Numerical Study of Soil Heterogeneity Effects on Contaminant Transport in Unsaturated Soil (Model Development and Validation), Int. J. Numer. Anal. Methods Geomech., vol. 37, no. 3, pp. 278-298,2013.

  83. Nakamura, K. and Kikumoto, M., Modeling Water-NAPL-Air Three-Phase Capillary Behavior in Soils, Soils Found., vol. 54, no. 6, pp. 1225-1235,2014.

  84. Nakamura, K. and Kikumoto, M., New Concept to Describe Three-Phase Capillary Pressure-Degree of Saturation Relationship in Porous Media, J. ContaminantHydrol., vol. 214, pp. 1-15, 2018.

  85. Nezhad, M.M., Javadi, A.A., and Rezania, M., Modeling of Contaminant Transport in Soils Considering the Effects of Micro- and Macro-Heterogeneity, J. Hydrol., vol. 404, nos. 3-4, pp. 332-338, 2011.

  86. Nezhad, M.M. and Javadi, A.A., Stochastic Finite-Element Approach to Quantify and Reduce Uncertainty in Pollutant Transport Modeling, J. Haz, Toxic, Radioactive Waste, vol. 15, no. 3, pp. 208-215,2011.

  87. Ngien, S.K., Rahman, N.A., Lewis, R.W., and Ahmad, K., Numerical Modelling of Multiphase Immiscible Flow in Double-Porosity Featured Groundwater Systems, Int. J. Numer. Anal. Methods Geomech., vol. 36, no. 10, pp. 1330-1349, 2012.

  88. Niemet, M.R. and Selker, J.S., A New Method for Quantification of Liquid Saturation in 2D Translucent Porous Media Systems Using Light Transmission, Adv. Water Resour., vol. 24, no. 6, pp. 651-666, 2001.

  89. Niswonger, R.G., Prudic, D.E., and Regan, R.S., Documentation of the Unsaturated-Zone Flow (UZF) Package for Modelling Unsaturated Flow between the Land Surface and the Water Table with M0DFL0W-2005, U.S. Geological Survey Techniques and Methods 6-A19, USGS, Reston, VA, 2006.

  90. Niswonger, R.G., Panday, S., and Motomu, I., MODFLOW-NWT, aNewton Formulation for M0DFL0W-2005,44, U.S. Geological Survey Techniques and Methods 6-A37, USGS, Reston, VA, 2011.

  91. Panday, S. and Huyakorn, P.S., MODFLOW SURFACT: A State-of-the-Art Use of Vadose Zone Flow and Transport Equations and Numerical Techniques for Environmental Evaluations, Vadose Zone J., vol. 7, no. 2, pp. 610-631, 2008.

  92. Panday, S., Forsyth, P.A., Falta, R.W., Wu, Y.S., and Huyakorn, P.S., Considerations for Robust Compositional Simulations of Subsurface Nonaqueous Phase Liquid Contamination and Remediation, Water Resour. Res., vol. 31, no. 5, pp. 1273-1289, 1995.

  93. Panday, S., Wu, Y.S., Huyakorn, P.S., Wade, S.C., and Saleem, Z.A., A Composite Numerical Model for Assessing Subsurface Transport of Oily Wastes and Chemical Constituents, J. Contam. Hydrol., vol. 25, no. 1, pp. 39-62,1997.

  94. Papafotiou, A., Helmig, R., Schaap, J., Lehmann, P., Kaestner, A., Fluhler, H., Neuweiler, I., Hassanein, R., Ahrenholz, B., Tolke, J., and Peters, A., From the Pore Scale to the Lab Scale: 3-D Lab Experiment and Numerical Simulation of Drainage in Heterogeneous Porous Media, Adv. Water Resour., vol. 31, no. 9, pp. 1253-1268, 2008.

  95. Parikh, A.K., Mehta, M.N., and Pradhan, V.H., A Numerical Solution of the Flow of Two Immiscible Fluids through Porous Media with Mean Pressure International, J. Adv. Comput. Math. Sci., vol. 3, no. 2, pp. 237-244, 2012a.

  96. Parikh, A.K., Mehta, M.N., and Pradhan, V.H., Generalised Separable Solution of Double Phase Flow through Homogeneous Porous Medium in Vertical Downward Direction due to Difference in Viscosity, Application Appl. Math.: An Int. J., vol. 8, no. 1,pp. 305-317,2012b.

  97. Parker, J.C. and Islam, M., Inverse Modelling to Estimate LNAPL Plume Release Timing, J. Contam. Hydrol., vol. 45, no. 3, pp. 303-327, 2000.

  98. Parker, J.C. and Lenhard, R.J., A Model for Hysteretic Constitutive Relations Governing Multiphase Flow: 1. Saturation-Pressure Relations, Water Resour. Res, vol. 23, no. 12, pp. 2187-2196,1987.

  99. Parkhurst, D.L. andAppelo, C.A.J., User's Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, Water-Resources Investigations Report 99-4259, Amsterdam, 1999.

  100. Parkhurst, D.L., Kipp, K.L., and Charlton, S.R., PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions, US Geological Survey Rep. No. 6-A35, 2010.

  101. Pasha, A.Y., Hu, L., and Meegoda, J.N., Numerical Simulations of a Light Nonaqueous Phase Liquid (LNAPL) Movement in Variably Saturated Soils with Capillary Hysteresis, Can. Geotech. J, vol. 51, no. 9, pp. 1046-1062, 2014.

  102. Payne, K.C., Jackson, C.D., Aizpurua, C.E., Rojas, O.J., and Hubbe, M.A., Oil Spills Abatement: Factors Affecting Oil Uptake by Cellulosic Fibres, J. Environ. Sci. Technol., vol. 46, no. 14, pp. 7725-7730, 2012.

  103. Prommer, H., Barry, D.A., and Zheng, C., MODFLOW/MT3DMS-Based Reactive Multicomponent Transport Modeling, Groundwater, vol. 41, no. 2, pp. 247-257, 2003.

  104. Pruess, K., ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Lawrence Berkeley National Laboratory, Berkeley, CA, 2005.

  105. Roberts, P.V., Goltz, M.N., and Mackay, D.M., A Natural Gradient Experiment on Solute Transport in a Sand Aquifer: 3. Retardation Estimates and Mass Balances for Organic Solutes, Water Resour. Res., vol. 22, no. 13, pp. 2047-2058, 1986.

  106. Sa'ari, R., Rahman, N.A., Yusof, Z.M., Ngien, S.K., Kamaruddin, S.A., Mustaffar, M., and Hezmi, M.A., Application of Digital Image Processing Technique in Monitoring LNAPL Migration In Double Porosity Soil Column, J. Teknologi, vol. 72, no. 3, pp. 23-29, 2015.

  107. Saw, S.K., Sarkhel, G., and Choudhury, A., Surface Modification of Coir Fibre Involving Oxidation of Lignins Followed by Reaction with Furfuryl Alcohol: Characterization and Stability, J. App. Surf. Sci., vol. 257, no. 8, pp. 3763-3769,2011.

  108. Schincariol, R.A., Herderick, E.E., and Schwartz, F.W., On the Application of Image Analysis to Determine Concentration Distributions in Laboratory Experiments, J. Contam. Hydrol, vol. 12, no. 3, pp. 197-215,1993.

  109. Schnoor, J.L., Environmental Modelling: Fate and Transport of Pollutants in Water, Air, and Soil, Hoboken, NJ: Wiley, 1996.

  110. Shan, W., Zhenmin, M., Weiwei, Y., Liang, Z., and Lingling, L., Migration Mechanism of Petroleum Hydrocarbon Pollutants in Groundwater System: A Case Study from Groundwater System in Jinan Refinery, 4th Int. Conf. on Bioinformatics and Biomedical Engineering, pp. 1-4, June 2010.

  111. Simantiraki, F., Aivalioti, M., and Gidarakos, E., Implementation of an Image Analysis Technique to Determine LNAPL Infiltration and Distribution in Unsaturated Porous Media, Desalination, vol. 248, no. 1, pp. 705-715, 2009.

  112. Simunek, J., Jacques, D., van Genuchten, M.T., and Mallants, D., Multicomponent Geochemical Transport Modelling Using the HYDRUS Computer Software Packages, J. Am. Water Resour. Assoc, vol. 42, pp. 1537-1547,2006.

  113. Simunek, J., Sejna, M., and van Genuchten., M.T., The Hydrus-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 2.0, IGWMCTPS 70, International Ground Water Modeling Center, Colorado School of Mines, Boulder, 1998.

  114. Simunek, J., Sejna, M., Jacques, D., Langergraber, G., Bradford, S.A., and van Genuchten, M.T., New Features of the HYDRUS Computer Software Packages, HYDRUS Software Applications to Subsurface Flow and Contaminant Transport Problems, p. 17, USA, 2013.

  115. Sreekumar, P.A., Thomas, S.P., Marc Saiter, J., Joseph, K., Unnikrishnan, G., and Thomas, S., Effect of Fibre Surface Modification on the Mechanical and Water Absorption Characteristics of Sisal/Polyester Composites Fabricated by Resin Transfer Molding, Composites: A, vol. 40, no. 11, pp. 1777-1784, 2009.

  116. Stroo, H.F., Unger, M., Ward, C.H., Kavanaugh, M.C., Vogel, C., Leeson, A., Marqusee, J.A., and Smith, B.P., Remediating Chlorinated Solvent Source Zones, J. Environ. Sci. Technol., vol. 37, no. 11, pp. 224A-230A, 2003.

  117. Sudsaeng, S., Yimsiri, S., and Likitlersuang, S., Assessment of Liquid Saturation in Sand by Image Analysis, Appl. Mech. Mater., vols. 256-259, pp. 494-498,2013.

  118. Sulaymon, A.H. and Gzar, H.A., Experimental Investigation and Numerical Modelling of Light Nonaqueous Phase Liquid Dissolution and Transport in a Saturated Zone of the Soil, J. Haz. Mater., vol. 186, pp. 1601-1614, 2011.

  119. Teas, C., Kalligeros, S., Zanikos, F., Stournas, S., Lois, E., and Anastopoulos, G., Investigation of the Effectiveness of Absorbent Materials in Oil Spills Clean Up, Desalination, vol. 140, no. 3, pp. 259-264,2001.

  120. Tidwell, V.C. and Glass, R.J., X Ray and Visible Light Transmission for Laboratory Measurement of Two-Dimensional Saturation Fields in Thin-Slab Systems, Water Resour. Res., vol. 30, no. 11, pp. 2873-2882, 1994.

  121. Tijani, M.M., Aqsha, A., and Mahinpey, N., Development of Oil-Spill Sorbent from Straw Biomass Waste: Experiments and Modelling Studies, J. Environ. Manage, vol. 171, pp. 166-176,2016.

  122. Trefry, M.G. and Muffels, C., FEFLOW: A Finite-Element Ground Water Flow and Transport Modeling Tool, Groundwater, vol. 45, no. 5, pp. 525-528, 2007.

  123. Tsakiroglou, C.D., A Multi-Scale Approach to Model Two-Phase Flow in Heterogeneous Porous Media, Transp. Porous Media, vol. 94, no. 2, pp. 525-536, 2012.

  124. Van Geel, P.J. and Sykes, J.F., Laboratory and Model Simulations of a LNAPL Spill in a Variably-Saturated Sand, 2. Comparison of Laboratory and Model Results, J. Contam. Hydrol, vol. 17, no. 1, pp. 27-53, 1994a.

  125. Van Geel, P. J., and Sykes, J.F., Laboratory and Model Simulations of a LNAPL Spill in a Variably-Saturated Sand, 1. Laboratory Experiment and Image Analysis Techniques, J. Contam. Hydrol., vol. 17, no. 1, pp. 1-25, 1994b.

  126. Van Geel, P. J. and Sykes, J.F., The Importance of Fluid Entrapment, Saturation Hysteresis and Residual Saturations on the Distribution of a Lighter-than-Water Non-Aqueous Phase Liquid in a Variably Saturated Sand Medium, J. Contam. Hydrol., vol. 25, nos. 3-4, pp. 249-270,1997.

  127. Voss, C.I. and A.M. Provost., SUTRA, a Model for Saturated-Unsaturated, Variable-Density Groundwater Flow with Solute or Energy Transport, USGS Water-Resources Investigations Report No. 02-4231,2010.

  128. Wang, S., Ma, Z., Yu, W., Zhang, L., and Li, L., Migration Mechanism of Petroleum Hydrocarbon Pollutants in Groundwater System: A Case Study from Groundwater System in Jinan Refinery, 4th Int. Conf. on Bioinformatics and Biomed. Eng., pp. 1-4,2010.

  129. Wanko, A., Tapia, G., and Mose, R., Contribution to Numerical Modeling of Water Flow in Variably Saturated, Heterogeneous Porous Media, Rev. Sci. Eau/J. Water Sci, vol. 28, no. 3, pp. 179-197, 2015.

  130. Weisbrod, N., Niemet, M.R., and Selker, J.S., Light Transmission Technique for the Evaluation of Colloidal Transport and Dynamics in Porous Media, J. Environ. Sci. Technol., vol. 37, no. 16, pp. 3694-3700, 2003.

  131. Wexler, E.J., Analytical Solutions for One-, Two-, and Three-Dimensional Solute Transport in Groundwater Systems with Uniform Flow, US Government Printing Office, 1992.

  132. White, M.D., Oostrom, M., and Lenhard, R.J., Modeling Fluid Flow and Transport in Variably Saturated Porous Media with the STOMP Simulator. 1. Nonvolatile Three-Phase Model Description, Adv. Water Resour., vol. 18, no. 6, pp. 353-364, 1995.

  133. Wissmeier, L. and Barry, D.A., Implementation of Variably Saturated Flow into PHREEQC for the Simulation of Biogeochemical Reactions in the Vadose Zone, J. Environ. Model. Soft., vol. 25, no. 4, pp. 526-538,2010.

  134. Wu, M.Z., Post, V.E., Salmon, S.U., Morway, E.D., and Prommer, H., PHT3D-UZF: A Reactive Transport Model for Variably-Saturated Porous Media, Groundwater, vol. 54, no. 1, pp. 23-34, 2015.

  135. Wu, Y.S. and Forsyth, P.A., On the Selection of Primary Variables in Numerical Formulation for Modelling Multiphase Flow in Porous Media, J. Contam. Hydrol., vol. 48, no. 3, pp. 277-304, 2001.

  136. Xie, Y., Wu, J., Xue, Y., and Xie, C., Efficient Triple-Grid Multiscale Finite Element Method for Solving Groundwater Flow Problems in Heterogeneous Porous Media, Transp. Porous Media, vol. 112, no. 2, pp. 361-380, 2016.

  137. Yang, M., Annable, M.D., and Jawitz, J.W., Light Reflection Visualization to Determine Solute Diffusion into Clays, J. Contam. Hydrol., vol. 161, pp. 1-9,2014.

  138. Yang, M., Yang, Y.S., Du, X., Cao, Y., and Lei, Y., Fate and Transport of Petroleum Hydrocarbons in Vadose Zone: Compound-Specific Natural Attenuation, J. Water Air Soil Pollut., vol. 224,no. 3, pp. 1439(1-14), 2013a.

  139. Yang, Z., Zandin, H., Niemi, A., and Fagerlund, F., The Role of Geological Heterogeneity and Variability in Water Infiltration on Non-Aqueous Phase Liquid Migration, Environ. Earth Sci., vol. 68, no. 7, pp. 2085-2097,2013b.

  140. Yoon, H., Oostrom, M., Wietsma, T.W., Werth, C.J., and Valocchi, A.J., Numerical and Experimental Investigation of DNAPL Removal Mechanisms in a Layered Porous Medium by Means of Soil Vapour Extraction, J. Contam. Hydrol., vol. 109, no. 1, pp. 1-13,2009.

  141. Younes, A., Mose, R., Ackerer, P., and Chavent, G., A New Formulation of the Mixed Finite Element Method for Solving Elliptic and Parabolic PDE with Triangular Elements, J. Comput. Phys, vol. 149, no. 1, pp. 148-167, 1999.

  142. Zhang, X., Huang, G.H., Lin, Q., and Yu, H., Petroleum-Contaminated Groundwater Remediation Systems Design: A Data Envel-opment Analysis based Approach, Expert Syst. Appl., vol. 36, pp. 5666-5672, 2009.

  143. Zheng, C. and Wang, P.P., MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems, Documentation and User's Guide, Alabama University, 1999.

  144. Zhou, J.F., Li, Y., Xu, J., and Kamon, M., Testing of NAPL Simulator to Predict Migration of a Light Nonaqueous Phase Liquid (LNAPL) under Water Table Fluctuation in a Sandy Medium, J. Cent. South Univ., vol. 21, no. 1, pp. 317-325, 2014.


Articles with similar content:

Improved Drug Delivery Using Microemulsions: Rationale, Recent Progress, and New Horizons
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.18, 2001, issue 1
J. R. Kanicky, D. O. Shah, P. K. Patanjali, B. J. Palla, R. P. Bagwe
NANOFLUID TRANSPORT IN POROUS MEDIA: A REVIEW
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 1
Younes Menni, Ali J. Chamkha, Ahmed Azzi
OPTIMIZATION OF THE PROFESSIONAL MOBILE RADIO COMMUNICATION NETWORK ARCHITECTURE FOR AN INDUSTRIAL FACILITY
Telecommunications and Radio Engineering, Vol.69, 2010, issue 9
I. E. Vilinov, A. V. Volodin
AN INTEGRATED SYSTEM FOR FUNCTIONAL MODELING AND CONFIGURATION IN CONCEPTUAL DESIGN
Flexible Automation and Intelligent Manufacturing, 1997:
Proceedings of the Seventh International FAIM Conference, Vol.0, 1997, issue
Janis P. Terpenny
MODELING NONEQUILIBRIUM CONTAMINANT TRANSPORT PROCESSES IN SOILS AND GROUNDWATER
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Martinus Th. van Genuchten, Elizabeth May Pontedeiro, Renato M. Cotta