Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.49 Facteur d'impact sur 5 ans: 1.159 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v11.i2.70
pages 219-230

Nonsimilar Solutions for Heat and Mass Transfer Flow in an Electrically Conducting Viscoelastic Fluid over a Stretching Sheet Saturated in a Porous Medium with Suction/Blowing

K. Rajagopal
Department of Mechanical Engineering, JNTU College of Engineering, Anantpur, Andhrapradesh 515001, India
P. H. Veena
Department of Mathematics, Smt. V. G. College for Women, Gulbarga, Karnataka 585102, India
V. K. Pravin
Department of Mechanical Engineering, P. D. A. College of Engineering, Gulbarga, Karnataka 585102, India

RÉSUMÉ

In this article, we present a mathematical analysis of nonsimilar solutions for flow, heat, and mass transfer phenomena in an electrically conducting viscoelastic fluid (Walters's liquid B' model) over a stretching sheet in the presence of heat source/sink, viscous dissipation, and suction or blowing. Similarity transformations are used to convert highly nonlinear partial differential equations into ordinary differential equations. Several closed form solutions for nondimensional temperature, concentration, heat flux, and mass flux are obtained in the form of confluent hypergeometric (Kummer's) functions for two different cases of the boundary conditions, namely, (1) a wall with prescribed second-order power law temperature and second-order power law concentration and (2) a wall with prescribed second-order power law heat flux and second-order power law mass flux. The effect of various physical parameters like the viscoelastic parameter, Eckert number, Prandtl number, Schmidt number, porosity parameter, and suction/blowing parameter on temperature and concentration profiles are analyzed. The effects of all these parameters on the wall temperature gradient and wall concentration gradient are also discussed.


Articles with similar content:

BOUNDARY LAYER FLOW OF VISCOELASTIC NANOFLUID OVER A WEDGE IN THE PRESENCE OF BUOYANCY FORCE EFFECTS
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 3
Naikoti Kishan, Madhu Macha
NUMERICAL STUDY ON MIXED CONVECTION IN A POWER-LAW FLUID SATURATED POROUS MEDIUM WITH VARIABLE PROPERTIES AND THERMOPHORESIS EFFECTS VIA LIE SCALING GROUP TRANSFORMATIONS
Computational Thermal Sciences: An International Journal, Vol.10, 2018, issue 6
G. Venkata Suman, Janapatla Pranitha, D. Srinivasacharya
FINITE ELEMENT SIMULATION OF UNSTEADY THIRD−GRADE FLOW WITH TEMPERATURE−DEPENDENT FLUID PROPERTIES
Journal of Porous Media, Vol.19, 2016, issue 3
Rama Bhargava, Minakshi Poonia
VISCOUS DISSIPATION AND JOULE HEATING INFLUENCES PAST A STRETCHING SHEET IN A POROUS MEDIUM WITH THERMAL RADIATION SATURATED BY SILVER–WATER AND COPPER–WATER NANOFLUIDS
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 2
Manoj Kumar, Ashish Mishra
THERMODIFFUSION AND DIFFUSION − THERMO EFFECTS ON MHD HEAT AND MASS TRANSFER OF MICROPOLAR FLUID OVER A STRETCHING SHEET
International Journal of Fluid Mechanics Research, Vol.44, 2017, issue 3
Patakota Sudarsana Reddy, Ali J. Chamkha, P. Sreedevi