Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.49 Facteur d'impact sur 5 ans: 1.159 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019029040
pages 387-394


D. Stoyan
Institute of Stochastics, TU Bergakademie Freiberg, D-09596 Freiberg, Germany
H. Hermann
Institute for Solid State and Materials Research, IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany
Antje Elsner
Sächsische Landesbibliothek – Staats- und Universitätsbibliothek Dresden (SLUB), D-01054 Dresden, Germany


The cherry-pit or penetrable concentric-shell model is an important, very successful stochastic model for random porous media with open pores. It is based on a random system of hard spheres (the "pits"), which are dilated in order to get open pores. The exact determination of porosity φ and specific surface s is a problem obviously too difficult for contemporary mathematics. In the 1980s approximations were found which are presented in the book by Torquato (Random Heterogeneous Materials: Microstructure and Macroscopic Properties, New York: Springer-Verlag, 2002). Since 2009 these formulas have been refined by the authors through a combination of simulation and ideas of stochastic geometry. This includes the study of the polydispersed case of pits with random radii, which was mastered by means of correction factors. In the present paper the true nature of these factors is explained, which leads to simple and elegant formulas in which only the first three moments of the radius distribution appear.


  1. Bargiel, M. and Moscinski, J., C-Language Program for the Irregular Close Packing of Hard Spheres, Computer Phys. Comm., vol. 64, pp. 183–192, 1991.

  2. Bezrukov, A., Bargiel, M., and Stoyan, D., Statistical Analysis of Simulated Random Packings of Spheres, Part. Part. Syst. Char., vol. 19, pp. 111–118, 2002.

  3. Chiew, Y.C. and Glandt, E.D., Interfacial Surface Area in Dispersions and Porous Media, J. Colloid Interface Sci., vol. 99, pp. 86–96, 1984.

  4. Chiu, S.N., Stoyan, D., Kendall, W.S., and Mecke, J., Stochastic Geometry and its Applications, 3rd ed., Chichester: Wiley & Sons, 2013.

  5. Devasena, M. and Indumathi, M.N., Distribution of Elemental Mercury in Saturated Porous Media, J. Porous Media, vol. 18, pp. 1221–1229, 2015.

  6. Elsner, A.,Wagner, A., Aste, T., Hermann, H., and Stoyan, D., Specific Surface Area and Volume Fraction of the Cherry-Pit Model with Packed Pits, J. Phys. Chem. B, vol. 113, pp. 7780–7784, 2009.

  7. Goetze, P., Mendes, M.A.A., Asad, A., Jorschick, H.,Werzner, E.,Wulf, R., Trimis, D., Gross, U., and Ray, S., Sensitivity Analysis of Effective Thermal Conductivity of Open-Cell Ceramic Foams using a Simplified Model based on Detailed Structure, Spec. Top. Rev. Porous Media, vol. 6, pp. 1–10, 2015.

  8. Gotoh, K., Nakagawa, M., Furuuchi, M., and Yoshigi, A., Pore Size Distributions in Random Assemblies of Equal Spheres, J. Chem. Phys., vol. 85, pp. 3078–3080, 1986.

  9. Hassanizadeh, S.M., Advanced Theories of Two-Phase Flow in Porous Media, in Handbook of Porous Media, K. Vafai, Ed., Boca Raton: CRC Press, pp. 47–59, 2015.

  10. Hermann, H., Elsner, A., and Stoyan, D., Surface Area and Volume Fraction of Random Open-Pore Systems, Modell. Simul. Mater. Sci. Eng., vol. 21, no. 8, Article ID 085005, 2013.

  11. Hermann, H. and Elsner, A., Geometric Models for Isotropic Random Porous Media: A Review, Adv. Mater. Sci. Eng., vol. 2014, Article ID 562874, 2014.

  12. Jodrey, W.S. and Tory, E.M., Computer Simulation of Close Random Packing of Equal Spheres, Phys. Rev. A, vol. 32, pp. 2347– 2351, 1985.

  13. Kansal, A.R., Torquato, S., and Stillinger, F.H., Computer Generation of Dense Polydisperse Sphere Packings, J. Chem. Phys., vol. 117, pp. 8212–8218, 2002.

  14. Kumar, P. and Topin, F., Impact of Anisotropy on Geometrical and Thermal Conductivity of Metallic Foam Structures, J. Porous Media, vol. 18, pp. 949–970, 2015.

  15. Kumar, P., Topin, F., and Tadrist, L., Geometrical Characterization of Kelvin-Like Metal Foams for Different Strut Shapes and Porosity, J. Porous Media, vol. 18, pp. 637–652, 2015.

  16. Lee, S.B. and Torquato, S., Porosity for the Penetrable-Concentric-Shell Model of Two-Phase Disordered Media: Computer Simulation Results, J. Chem. Phys., vol. 89, pp. 3258–3263, 1988.

  17. Panda, M.N. and Lake, L.W., Estimation of Single-Phase Permeability from Parameters of Particle-Size Distribution, AAPG Bull., vol. 78, no. 7, pp. 1028–1039, 1994.

  18. Rikvold, P.A. and Stell, G., Porosity and Specific Surface for Interpenetrable-Sphere Models of Random Two-Phase Media, J. Chem. Phys., vol. 82, no. 2, pp. 1014–1020, 1985.

  19. Sahimi, M., Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches,Weinheim: Wiley-VCH, 1995.

  20. Stoyan, D., Random Sets: Models and Statistics, Int. Stat. Rev., vol. 66, pp. 1–27, 1998.

  21. Stoyan, D., Wagner, A., Hermann, H., and Elsner, A., Statistical Characterization of the Pore Space of Random Systems of Hard Spheres, J. Non-Cryst. Solids, vol. 357, pp. 1508–1515, 2011.

  22. Torquato, S., Bulk Properties of Two-Phase Disordered Media – I. Cluster Expansion for the Effective Dielectric Constant of Dispersions of Penetrable Spheres, J. Chem. Phys., vol. 81, pp. 5079–5088, 1984.

  23. Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties, New York: Springer-Verlag, 2002.

  24. Torquato, S. and Stell, G., Microstructure of Two-Phase Random Media. IV. Expected Surface Area of a Dispersion of Penetrable Spheres and its Characteristic Function, J. Chem. Phys., vol. 80, pp. 878–880, 1984.

  25. Vafai, K., Ed., Handbook of Porous Media, 3rd ed., Boca Raton: CRC Press, 2015.

Articles with similar content:

International Journal of Energy for a Clean Environment, Vol.19, 2018, issue 1-2
Yaqiong Chen, Xiaoxiao Wang, Xiaohua Liu, Shi Chen, Shengqiang Shen
International Seminar 1969
Zoran Zaric
Second Thermal and Fluids Engineering Conference, Vol.43, 2017, issue
Yaqiong Chen, Sheng Qiang Shen, Xiaohua Liu, Xiaoxiao Wang, Shi Chen
Moving Weighted Rank Image Transforms
Journal of Automation and Information Sciences, Vol.32, 2000, issue 1
Roman A. Vorobel
Analytical Calculations of the Fine Structure of Diffraction Anomalies in Resonant Diffraction
Telecommunications and Radio Engineering, Vol.52, 1998, issue 12
N. A. Balakhonova