Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.49 Facteur d'impact sur 5 ans: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v12.i9.30
pages 847-867

Modeling, Optimization and Simulation for Chemical Vapor Deposition

Juergen Geiser
Univerity of Greifswald
M. Arab
Humboldt-Universität zu Berlin,Department of Mathematics, Germany

RÉSUMÉ

Our studies are motivated by a desire to model chemical vapor deposition for metallic bipolar plates and optimization to deposit a homogeneous layer. We present a mesoscopic model, which reflects the transport and reaction of the gaseous species through a homogeneous media in the chamber. The models, which are discussed in the article, considered the conservation of mass and the underlying porous media is in accordance with the Darcy's law. The transport through the stationary and non-ionized plasma field is treated as a diffusion-dominated flow, (Gobbert and Ringhofer, SIAM J. Appl. Math., vol. 58, pp. 737-752, 1998) where the metallic deposit and the gas chamber, looking like a porous media, (Roach, Proc. of COMSOL Users Conference, Paris , 2006; Cao, Brinkman, Meijerink, DeVries, and Burggraaf J. Mater. Chem., vol. 3, pp. 1307-1311, 1993). We choose porous ceramic membranes and gas catalysts like Argon (Ar), (Cao et al., 1993) and apply our experience in simulating gaseous flow and modeling the penetration of such porous media (Jin and Wang, J. Comput. Phys., vol. 79, pp. 557-577, 2002). Numerical methods are developed to solve such multi-scale models. We combine discretization methods with respect to the various source terms to control the required gas mixture and the homogeneous layering. We present an expert system with various source and target controls to present the accuratest computational models. For such efficient choice of models, we apply our numerical methods and simulate an optimal homogeneous deposition at the target. The results are discussed by means of physical experiments to give a valid model for the assumed growth.


Articles with similar content:

SIMULATION OF A CHEMICAL VAPOR DEPOSITION: MOBILE AND IMMOBILE ZONES AND HOMOGENEOUS LAYERS
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 2
Juergen Geiser, M. Arab
Discretization and Solver Methods with Analytical Characteristic Methods for Advection-Diffusion Reaction Equations and 2D Applications
Journal of Porous Media, Vol.12, 2009, issue 7
Juergen Geiser
SIMULATION OF CHEMICAL VAPOR DEPOSITION: FOUR-PHASE MODEL
Special Topics & Reviews in Porous Media: An International Journal, Vol.3, 2012, issue 1
Juergen Geiser, M. Arab
MODEL OF PE-CVD APPARATUS: ELECTRICAL FIELDS AND DEPOSITION GEOMETRY
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 3
Juergen Geiser, M. Arab
Solid-Phase Extraction of Organic Semivolatile and Non-volatile Compounds Contaminating Natural Waters in Trace Amounts
Hydrobiological Journal, Vol.37, 2001, issue 4
M. V. Milyukin