Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.49 Facteur d'impact sur 5 ans: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v16.i7.70
pages 663-676

VISCOUS CORRECTIONS FOR THE VISCOUS POTENTIAL FLOW ANALYSIS OF MAGNETO-HYDRODYNAMIC KELVIN-HELMHOLTZ INSTABILITY THROUGH POROUS MEDIA

Mukesh Awasthi
Babasaheb Bhimrao Ambedkar University, Lucknow
Mohammad Tamsir
Department of Mathematics, Graphic Era University, Dehradun

RÉSUMÉ

Viscous corrections for the viscous potential flow analysis of Kelvin-Helmholtz instability at the interface of two incompressible, viscous, and electrically conducting fluids has been carried out. The fluids are flowing through porous media between two rigid planes and they are subjected to a constant magnetic field parallel to the streaming direction. In viscous potential flow theory, viscosity enters through normal stress balance and the effect of shearing stresses is completely neglected. We include the viscous pressure in the normal stress balance along with irrotational pressure and it is assumed that this viscous pressure will resolve the discontinuity of the tangential stresses at the interface for two fluids. A dispersion relation has been derived and stability is discussed theoretically as well as numerically. The stability criterion is given in terms of a critical value of relative velocity as well as the critical value of applied magnetic field. It has been observed that a tangential magnetic field has a stabilizing effect on the stability of the system while a porous medium destabilizes the interface. Also, it has been found that the effect of irrotational shearing stresses stabilizes the system.