Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.49 Facteur d'impact sur 5 ans: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v19.i4.30
pages 313-329

THERMAL RADIATION EFFECTS ON NON-NEWTONIAN FLUID IN A VARIABLE POROSITY REGIME WITH PARTIAL SLIP

A. Subba Rao
Department of Mathematics, Madanapalle Institute of Technology and Science, Madanapalle, India
V. Ramachandra Prasad
Department of Mathematics, Madanapalle Institute of Technology and Science, Madanapalle, India
K. Harshavalli
Department of Mathematics, NTR Govt. Degree College, Vayalpadu, Andrapradesh, India
Osman Anwar Beg
Gort Engovation-Aerospace, Medical and Energy Engineering, Gabriel's Wing House, 15 Southmere Avenue, Bradford, BD73NU, United Kingdom

RÉSUMÉ

The laminar boundary layer flow and heat transfer for multiphysical transport of an optically dense Casson non-Newtonian fluid along an isothermal horizontal circular cylinder embedded in a variable-porosity medium in the presence of thermal and hydrodynamic slip conditions is analyzed. Non-Darcy effects are simulated via a second-order Forchheimer drag force term in the momentum boundary layer equation. The cylinder surface is maintained at a constant temperature. The boundary layer conservation equations, which are parabolic in nature, are normalized into nonsimilar form and then solved computationally with an efficient, implicit, stable Keller-box finite-difference scheme. Increasing velocity slip consistently enhances temperatures and reduces velocity throughout the boundary layer regime. An increase in thermal slip parameter strongly decelerates the flow and also reduces temperatures in the boundary layer regime. Increasing porosity is found to elevate velocities, that is, accelerate the flow, but decrease temperatures, that is, cool the boundary layer regime. Thermal radiation parameter (inversely proportional to radiative flux contribution) is seen to reduce both velocity and temperature in the boundary layer. Local Nusselt number is also found to be enhanced with increasing radiation parameter. Temperatures are, however, very slightly decreased with increasing values of Casson non-Newtonian parameter. The study is relevant to processing of plastics in industry.


Articles with similar content:

THERMAL RADIATION EFFECTS ON MAGNETOHYDRODYNAMIC HEAT AND MASS TRANSFER FROM A HORIZONTAL CYLINDER IN A VARIABLE POROSITY REGIME
Journal of Porous Media, Vol.15, 2012, issue 3
V. Ramachandra Prasad, Vasu B, D. Rana Parshad, O. Anwar Bég
HEAT TRANSFER IN VISCOPLASTIC BOUNDARY-LAYER FLOW FROM A VERTICAL PERMEABLE CONE WITH MOMENTUM AND THERMAL WALL SLIP: NUMERICAL STUDY
Heat Transfer Research, Vol.49, 2018, issue 3
V. Ramachandra Prasad, V. Naga Radhika, Annasagaram Subba Rao, O. Anwar Bég
Numerical Study of Chemically Reactive Buoyancy-Driven Heat and Mass Transfer across a Horizontal Cylinder in a High-Porosity Non-Darcian Regime
Journal of Porous Media, Vol.12, 2009, issue 6
Tasveer A. Beg, Harmindar S. Takhar, Joaquin Zueco, O. Anwar Bég
MIXED CONVECTION SLIP FLOW WITH HEAT TRANSFER AND POROUS MEDIUM
Journal of Porous Media, Vol.17, 2014, issue 11
Swati Mukhopadhyay, Iswar Chandra Mandal, Tasawar Hayat
EFFECT OF THERMAL RADIATION ON MIXED CONVECTION FLOW OF A NANOFLUID ABOUT A SOLID SPHERE IN A SATURATED POROUS MEDIUM UNDER CONVECTIVE BOUNDARY CONDITION
Journal of Porous Media, Vol.18, 2015, issue 6
S.M.M. EL-Kabeir, Ahmed M. Rashad, M. Modather