Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.061 Facteur d'impact sur 5 ans: 1.151 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v14.i4.80
pages 363-373

QUANTIFYING THE ROLE OF PORE GEOMETRY AND MEDIUM HETEROGENEITY ON HEAVY OIL RECOVERY DURING SOLVENT/CO-SOLVENT FLOODING INWATER-WET SYSTEMS

Ali Akbar Dehghan
Tehran Petroleum Research Center, Petroleum University of Technology, Iran; and Department of Chemical and Petroleum Engineering, University of Calgary, Canada
Riyaz Kharrat
Petroleum University of Technology, Petroleum Research Center, Tehran, Iran
Mohammad Hossein Ghazanfari
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
S. Vossoughi
Department of Chemical and Petroleum Engineering, University of Kansas, USA

RÉSUMÉ

Porous medium characteristics (e.g., pore geometry and medium heterogeneity) as well as the chemical nature of the o-solvents crucially affect the oil displacement efficiency during solvent flooding processes. In this work, initially saturated models with heavy crude oil were used to perform a series of solvent injection experiments. Several one-quarter five-spot micromodels with pre-designed pore geometry were constructed and used. In addition, rock-look-alike flow patterns generated from thin sections of sandstone and dolomite reservoir rocks were etched onto glass plates to form micromodels mimicking the pore geometry and heterogeneity of these rocks. Four different groups of chemicals and their mixtures were used to investigate the effect of co-solvents when they were added to the main liquid hydrocarbon. Highresolution video pictures taken of the displacement process allowed microscopic analysis of the displacement mechanism at the pore level. Experimental results revealed that the displacement efficiencies of solvent mixtures greatly depend on the chemical properties of the added co-solvents. The most effective co-solvent with the greatest sweep efficiency was detected from different chemical mixtures. The experiments performed on various network patterns demonstrated that a higher coordination number along with a higher pore−throat size ratio of the flow paths improved the displacement efficiency. Media heterogeneity resulted in higher residual oil saturation by reducing the contact area, increasing the solvent bypass, and causing the oil to be trapped. The microscopic observations confirmed that the presence of connate water in strongly water-wet medium could improve the final recovery. However, the extent of this improvement greatly depends on the type of co-solvents used in the injection process.


Articles with similar content:

EXPERIMENTAL STUDY OF MISCIBLE DISPLACEMENT WITH HYDROCARBON SOLVENT IN SHALY HEAVY OIL RESERVOIRS USING FIVE-SPOT MICROMODELS: THE ROLE OF SHALE GEOMETRICAL CHARACTERISTICS
Journal of Porous Media, Vol.15, 2012, issue 5
Mohsen Masihi, Saber Mohammadi, Mohammad Hossein Ghazanfari, Riyaz Kharrat
EXPERIMENTAL INVESTIGATION OF WETTABILITY EFFECT AND DRAINAGE RATE ON TERTIARY OIL RECOVERY FROM FRACTURED MEDIA
Journal of Porous Media, Vol.15, 2012, issue 12
H. K. Al-Hadrami, P. Maroufi, A. Jahanmiri, M. Escrochi, H. Rahmanifard, Shahab Ayatollahi
EFFECTS OF FRACTURE PROPERTIES ON THE BEHAVIOR OF FREE-FALL AND CONTROLLED GRAVITY DRAINAGE PROCESSES
Journal of Porous Media, Vol.15, 2012, issue 4
Nima Rezaei, Sohrab Zendehboudi, Ioannis Chatzis
EFFECT OF ORIENTATION OF STRATA ON MACROSCOPIC SWEEP EFFICIENCY OF WATER/POLYMER FLOODING IN LAYERED POROUS MEDIA
Journal of Porous Media, Vol.14, 2011, issue 9
Benyamin Yadali Jamaloei, Riyaz Kharrat, Hamid Emami-Meybodi
Immiscible Displacement in a Partial Porous Channel using the Lattice Boltzmann Method
Second Thermal and Fluids Engineering Conference, Vol.43, 2017, issue
Liang Gong, John C. Chai, Shanbo Huang, Minghai Xu, Huan Mao