Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.752 Facteur d'impact sur 5 ans: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v13.i3.20
pages 209-219

THREE-DIMENSIONAL MODELING OF THE EVAPORATIONOFVOLATILE HYDROCARBONS FROM ANISOTROPIC POROUS MEDIA

A. G. Yiotis
Environmental Research Laboratory, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15310, Athens
I. N. Tsimpanogiannis
Environmental Research Laboratory, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15310, Athens
Athanasios K. Stubos
Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR Demokritos, 15310 Aghia Paraskevi

RÉSUMÉ

Lean gas injection has been considered as a process to improve the recovery of residual volatile hydrocarbons from fractured petroleum reservoirs. The characterization and modeling of flow and mass transfer in fractured reservoirs are challenging tasks due to the complexity of the pore space, the anisotropy in the permeability of the rock, as well as the complex interplay between capillary, viscous, and buoyancy forces. In this contribution we develop a three-dimensional pore-network model that accounts for evaporation and diffusion of volatile liquids trapped in anisotropic pore networks. We investigate the effect of permeability gradients on the saturation profiles, the recovery rates, the evaporation patterns, and the stability of the receding evaporation fronts. It is shown that permeability gradients affect the stability of the evaporation front. When the permeability decreases in the direction of the receding evaporation front, then the front is stable and recedes in a piston-like manner, where a two-phase region of finite size develops early in the drying process. The size of this region depends on a permeability-based bond number defined in this paper. In the opposite case, where the permeability increases in the direction of the receding evaporation front, the liquid-gas interface becomes unstable and produces finger-like patterns. The thickness of these fingers is a function of the permeability-based bond number.


Articles with similar content:

MACROSCOPIC AND MICROSCOPIC INVESTIGATION OF ALKALINE−SURFACTANT−POLYMER FLOODING IN HEAVY OIL RECOVERY USING FIVE-SPOT MICROMODELS: THE EFFECT OF SHALE GEOMETRY AND CONNATE WATER SATURATION
Journal of Porous Media, Vol.18, 2015, issue 8
Amin Mehranfar, Davood Rashtchian, Mohsen Masihi, Mohammad Hossein Ghazanfari
MODELING OF MULTISTEP DRAINAGE PROCESS USING THE EXTENDED INTERACTIVE TUBE-BUNDLE MODEL
Journal of Porous Media, Vol.18, 2015, issue 2
Mingzhe Dong, Shengdong Wang
A FULLY COUPLED COMPUTATIONAL FRAMEWORK FOR FLUID PRESSURIZED CRACK EVOLUTION IN POROUS MEDIA
Journal of Porous Media, Vol.22, 2019, issue 8
Mohammad Rezania, Walid Tizani, Mohaddeseh Mousavi Nezhad, P. G. Ranjith, Alex Hardcastle
WETTABILITY EFFECTS IN GAS GRAVITY—ASSISTED FLOW AS RELATED TO DISPLACEMENT INSTABILITY
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 1
Behzad Rostami, V. Alipour Tabrizy, Riyaz Kharrat, C. Ghotbi, M. Khosravi
FLOW OF A FLUID THROUGH A POROUS SOLID DUE TO HIGH PRESSURE GRADIENTS
Journal of Porous Media, Vol.16, 2013, issue 3
Shriram Srinivasan, Andrea Bonito, Kumbakonam R. Rajagopal