Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.061 Facteur d'impact sur 5 ans: 1.151 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v12.i11.60
pages 1103-1111

Criterion for Local Thermal Equilibrium in Forced Convection Flow Through Porous Media

Xuewei Zhang
Huazhong University of Science and Technology, School of Energy and Power Engineering, Wuhan 430074
Wei Liu
School of Energy and Power Engineering, Huazhong University of Science & Tecnology, 1037 Luo Yu Rd. Hongshan District, Wuhan 430074, China
Zhichun Liu
School of Energy and Power Engineering, Huazhong University of Science & Tecnology, 1037 Luo Yu Rd. Hongshan District, Wuhan 430074, China

RÉSUMÉ

In this paper, a general criterion for local thermal equilibrium is presented in terms of parameters including the effective fluid Prandtl number, the particle Reynolds number, the effective solid-to-fluid thermal conductivity ratio, the Darcy number, the Nusselt number, and porosity. In order to check the validity of the proposed criterion for local thermal equilibrium, the forced convection phenomena in the porous medium between two parallel plates subjected to constant temperature are studied by a numerical method based on the Brinkman-Forchheimer extended Darcy model. The proportion of temperature difference between solid and fluid phases in a representative elementary volume to the temperature rise of fluid is studied by comparing the effects of relevant parameters in this new criterion. In addition, the proposed criterion is consistent with the existing experimental and numerical results for convection heat transfer in porous medium.


Articles with similar content:

LATTICE BOLTZMANN SIMULATION OF THERMAL NON-EQUILIBRIUM FORCED CONVECTIVE FLOW AND ENERGY STORAGE IN A POROUS CHANNEL
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2014, issue
Hussein El Abrach, Baycain Amami, Hacen Dhahri, Abdallah Mhimid
Forced Convection through a Hyperporous Duct with Internal Heating/Cooling Effects
International Journal of Fluid Mechanics Research, Vol.30, 2003, issue 5
Kamel Hooman
Numerical Simulation on Mixed Convection in a Porous Medium Heated by a Vertical Cylinder
ICHMT DIGITAL LIBRARY ONLINE, Vol.2, 2004, issue
Shigeo Kimura, Ling Li
LATTICE BOLTZMANN SIMULATION OF FREE CONVECTION IN AN INCLINED OPEN-ENDED CAVITY PARTIALLY FILLED WITH FIBROUS POROUS MEDIA
Journal of Porous Media, Vol.21, 2018, issue 12
Abbas Abbassi, Alireza Sanjari, Mohammad Abbaszadeh
HYDRODYNAMIC BEHAVIORS OF AN ISOTROPIC DEFORMABLE POROUS MEDIA USING THE LATTICE BOLTZMANN METHOD
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2014, issue
Mhimid Abdallah, Dhahri Hacen, Amami Baycain, El Abrach Hussein