Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Porous Media
Facteur d'impact: 1.752 Facteur d'impact sur 5 ans: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Imprimer: 1091-028X
ISSN En ligne: 1934-0508

Volumes:
Volume 24, 2021 Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v19.i7.50
pages 635-647

NUMERICAL SIMULATION OF COUNTERCURRENT SPONTANEOUS IMBIBITION OF CARBONATED WATER IN POROUS MEDIA

Mohsen Abbaszadeh
School of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
Masoud Nasiri
School of Chemical, Petroleum, and Gas Engineering, Semnan University, Semnan, Iran
Masoud Riazi
Enhanced Oil Recovery (EOR) Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran

RÉSUMÉ

Spontaneous imbibition is known as one of the main recovery driving forces in naturally fractured reservoirs. In this study, a numerical model to investigate the impact of carbonated water on oil recovery during spontaneous countercurrent imbibition is presented. This model includes the dynamic modification of oil viscosity, oil swelling, wettability, and interfacial tension. The results show that the injection of carbonated (CO2-enriched) water can improve water spontaneous imbibition rates as the system goes toward a more water-wet condition. The tertiary process also becomes more efficient as the remaining oil viscosity decreases. The results show that using the same relative permeability and capillary pressure data for simulation of both water and carbonated water displacements yields the system more quickly reaching the residual oil saturation in the carbonated water case, however, with the same ultimate oil recovery compared to that of the water case.


Articles with similar content:

EXPERIMENTAL INVESTIGATION AND NUMERICAL SIMULATION OF VISCOUS FINGERING IN POROUS MEDIA DURING CO2 FLOODING
Journal of Porous Media, Vol.22, 2019, issue 12
Wei Tian, Detang Lu, Zhiwei Lu, Peichao Li
THE SIMULATION OF VISCOUS FINGERING BY USING A DIFFUSION-LIMITED-AGGREGATION MODEL DURING CO2 FLOODING
Journal of Porous Media, Vol.21, 2018, issue 6
Yaoge Liu, Peichao Li, Detang Lu, Zhiwei Lu, Wei Tian
WETTABILITY EFFECTS IN GAS GRAVITY—ASSISTED FLOW AS RELATED TO DISPLACEMENT INSTABILITY
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 1
Behzad Rostami, V. Alipour Tabrizy, Riyaz Kharrat, C. Ghotbi, M. Khosravi
Dynamics of Pulsed Two-Phase Flow in Porous Media: Bead Pack and Core Plug Experiments
Journal of Porous Media, Vol.11, 2008, issue 1
Mariela Araujo Fresky , Denis Ivanov, Oneida Leon, Richard Marquez
STUDY ON WATERFLOODING PERFORMANCE IN LOW PERMEABILITY RESERVOIRS USING STREAM-TUBE METHOD
Special Topics & Reviews in Porous Media: An International Journal, Vol.8, 2017, issue 4
Zhitao Xu, Hongjun Yin, Xingke Li, Huiying Zhong