Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Biomedical Engineering
SJR: 0.26 SNIP: 0.375 CiteScore™: 1.4

ISSN Imprimer: 0278-940X
ISSN En ligne: 1943-619X

Volume 48, 2020 Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v37.i4-5.50
pages 399-421

Stem Cells for Skin Tissue Engineering and Wound Healing

Ming Chen
The Center for Engineering Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
Melissa Przyborowski
Department of Biomedical Engineering, Rutgers University, New Brunswick, New Jersey, USA
Francois Berthiaume
Department of Biomedical Engineering, Rutgers University, New Brunswick, New Jersey, USA


The tremendous ability of the skin's epidermis to regenerate is due to the presence of epidermal stem cells that continuously produce keratinocytes, which undergo terminal differentiation to a keratinized layer that provides the skin's barrier properties. The ability to control this process in vitro has made it possible to develop various types of tissue-engineered skin grafts, some of which are among the first tissue-engineered products to ever reach the market. In the past 30 years, these products have been applied with some success to the treatment of chronic skin wounds such as diabetic and venous ulcers and deep, acute wounds such as burns. Current technologies remain partially effective in their ability to restore other skin structures, for example, the dermis, which is critical to the overall long-term appearance and function of the skin. As yet, none of these approaches can regenerate skin appendages (e.g. hair follicles and sweat glands). The use of earlier progenitor and stem cells, including embryonic stem cells, is gaining interest in the attempt to overcome such limitations. Furthermore, recent evidence suggests that "adult" stem cells, which are present in the circulation, target areas of injury and likely participate in the wound-healing process. In this paper, we start with an overview of the wound-healing process and current methods used for wound treatment, both conventional and tissue-engineering based. We then review current research on the various types of stem cells used for skin tissue engineering and wound healing, and provide future directions.

Articles with similar content:

Human Umbilical Cord–Derived Stem Cells: Isolation, Characterization, Differentiation, and Application in Treating Diabetes
Critical Reviews™ in Biomedical Engineering, Vol.46, 2018, issue 5
Bhawna Chandravanshi, Ramesh R. Bhonde
Dual Protective and Cytotoxic Benefits of Mesenchymal Stem Cell Therapy in Combination with Chemotherapy/Radiotherapy for Cancer Patients
Critical Reviews™ in Eukaryotic Gene Expression, Vol.25, 2015, issue 3
Shaghayegh Haghjooy Javanmard, Fatemeh Hendijani
Potential Role of Induced Pluripotent Stem Cells as Regenerative Medicine in Retinal Cell Damage
Journal of Environmental Pathology, Toxicology and Oncology, Vol.37, 2018, issue 4
Yi-Ran Pan, Ying-Jian Sun, Bin Fan, Guang-Yu Li
Stem Cells: A New Paradigm in Medical Therapeutics
Journal of Long-Term Effects of Medical Implants, Vol.20, 2010, issue 3
Sadanand D. Mankikar
Emerging Trends in Therapeutic Algorithm of Chronic Wound Healers: Recent Advances in Drug Delivery Systems, Concepts-to-Clinical Application and Future Prospects
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 5
Hnin Ei Thu, Shahzeb Khan, Mei Shao, Victoria Silkstone, Syed Nasir Abbas Bukhari, Zahid Hussain, Marcel de Matas, Hua-Li Qin