Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimer: 0278-940X
ISSN En ligne: 1943-619X

Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v39.i3.20
pages 185-200

Microfluidic and Compartmentalized Platforms for Neurobiological Research

Anne Taylor
1Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
Noo Li Jeon
WCU Multiscale Mechanical Design Division, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea


Methods to compartmentalize neurons allow distinct neuronal segments (i.e., cell bodies, axons, dendrites, or synapses) to be accessed, visualized, and/or manipulated. Compartmentalization has resulted in multiple studies that would not otherwise be possible in vivo or in traditional random cultures, such as investigations of axonal transport, biochemical analysis of axons, and axonal injury/regeneration. Chambers for compartmentalizing neurons were first developed for long projection peripheral neurons in the 1970s using machined Teflon dividers and relied on manually applied grease layers to spatially and fluidically separate distal axons from their cell bodies. More recently microfabrication and soft lithography techniques have been used to create compartmentalized microfluidic platforms, relying on microgrooves contained within a solid barrier through which axons and dendrites are able to extend, but not their cell bodies. These platforms are unique in their ability to culture central nervous system (CNS) neurons and allow high-resolution live imaging. These microfluidic platforms have allowed new investigations of axonal and synaptic biology in the CNS. Moreover, these microfluidic platforms offer improvements for other neural cell and tissue preparations. In this review we discuss traditional methods for compartmentalization, compartmentalized microfluidic platforms, and their use for neurobiology. Lastly, we discuss the use of these platforms for defining and manipulating synapses both pharmacologically and by electrical stimulation and recording.