Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Imprimer: 0278-940X
ISSN En ligne: 1943-619X

Volumes:
Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v30.i456.20
pages 249-281

Uncovering the Mechanisms of Deep Brain Stimulation for Parkinson's Disease through Functional Imaging, Neural Recording, and Neural Modeling

Cameron C. McIntyre
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Nitish V. Thakor
Johns Hopkins University School of Medicine, Department of Biomedical Engineering, Traylor Research Building, Room 701, 720 Rutland Ave., Baltimore MD, 21205

RÉSUMÉ

High-frequency deep brain stimulation (DBS) of the thalamus or basal ganglia represents an effective clinical technique for the treatment of several medically refractory movement disorders, including Parkinson's disease. However, understanding of the mechanisms of action of DBS remains elusive. The goal of this review is to address our understanding of the effects of high-frequency stimulation within the central nervous system based on results from functional imaging, neural recording, and neural modeling experiments. Using these results, we address the main hypotheses on the mechanisms of action of DBS and conclude that stimulation-induced desynchronization of network oscillations represents the hypothesis that best explains the presently available data.