Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Biomedical Engineering
SJR: 0.26 SNIP: 0.375 CiteScore™: 1.4

ISSN Imprimer: 0278-940X
ISSN En ligne: 1943-619X

Volumes:
Volume 48, 2020 Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v30.i456.40
pages 307-343

Biomechanics of Single Chondrocytes and Osteoarthritis

Kyriacos A. Athanasiou
Department of Bioengineering, Rice University, Houston, Texas, USA
Adrian C. Shieh
Department of Bioengineering, Rice University, Houston, Texas

RÉSUMÉ

Osteoarthritis is a significant, debilitating disease that afflicts millions of Americans, yet its etiology is poorly understood. However, there is substantial evidence that biomechanical factors play a role in the development and progression of osteoarthritis. Previous work has demonstrated that biomechanical factors such as an acute insult or the cumulative effects of repetitive loads can induce degenerative changes in joints, cartilage explants, and isolated chondrocytes. Nevertheless, all of these studies suffer from the limitation that the precise nature of the mechanical loads experienced by individual cells is not well defined. Implementation of a single-cell approach, employing existing cell mechanics methodologies and molecular techniques such as single-cell reverse transcriptase- polymerase chain reaction (RT-PCR), offers an exciting new means to identify which biomechanical factors precipitate pathological changes in chondrocytes indicative of osteoarthritis. This article reviews the particular methods used in mechanical studies of single cells with emphasis on techniques that have been used to investigate chondrocytes and similar anchorage-dependent cell types. The fundamentals of RT-PCR and its application at the single-cell level are also discussed.


Articles with similar content:

Biomechanical Analysis of Injury Criterion for Child and Adult Dummies
Critical Reviews™ in Biomedical Engineering, Vol.28, 2000, issue 1&2
Anthony Sances, Jr.
Regulation of Chondrocytic Gene Expression by Biomechanical Signals
Critical Reviews™ in Eukaryotic Gene Expression, Vol.18, 2008, issue 2
Sudha Agarwal, Shashi Madhavan, Jin Nam, Suresh Agarwal, Jr., Thomas J. Knobloch
Bi-Directional Signaling: Extracellular Matrix and Integrin Regulation of Breast Tumor Progression
Critical Reviews™ in Eukaryotic Gene Expression, Vol.23, 2013, issue 2
Suzanne M. Ponik, Scott Gehler, Patricia J. Keely, Kristin M Riching
Biomechanical Basis of Vascular Tissue Engineering
Critical Reviews™ in Biomedical Engineering, Vol.27, 1999, issue 1-2
S. Q. Liu
Mesenchymal Stem Cells in the Aging and Osteoporotic Population
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 4
Milena Fini, Paola Torricelli, Francesca Veronesi, Matilde Tschon, Veronica Borsari, Lia Rimondini