Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Biomedical Engineering
SJR: 0.26 SNIP: 0.375 CiteScore™: 1.4

ISSN Imprimer: 0278-940X
ISSN En ligne: 1943-619X

Volume 48, 2020 Volume 47, 2019 Volume 46, 2018 Volume 45, 2017 Volume 44, 2016 Volume 43, 2015 Volume 42, 2014 Volume 41, 2013 Volume 40, 2012 Volume 39, 2011 Volume 38, 2010 Volume 37, 2009 Volume 36, 2008 Volume 35, 2007 Volume 34, 2006 Volume 33, 2005 Volume 32, 2004 Volume 31, 2003 Volume 30, 2002 Volume 29, 2001 Volume 28, 2000 Volume 27, 1999 Volume 26, 1998 Volume 25, 1997 Volume 24, 1996 Volume 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2018027342
pages 429-468

Dental Tissue−Derived Mesenchymal Stem Cells: Applications in Tissue Engineering

Jay R. Dave
Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
Geetanjali B. Tomar
Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India


In recent years, mesenchymal stem cells (MSCs) derived from dental tissue have gained in popularity for tissue-engineering and regenerative medicine applications. The highly proliferative and self-renewing population of dental stem cells has the neural crest as their origin. This expands their applicability for regeneration of tissues from both ectochyme and mesenchymal origin. Ease of tissue harvest, high initial yield of cells, low population-doubling time, plasticity, multipotential capabilities, and immunomodulatory properties make them a suitable candidate for various therapeutic strategies. Furthermore, dental tissue–derived cells can be transformed into induced pluripotent stem cells to customize cell-based regenerative approaches. However, there is currently a lack of exhaustive comparative profiles of these dental tissues and their regenerative applications. We thereby present a comprehensive compilation of morphofunctional analyses and tissue-engineering applications of MSCs that are derived from tooth germ, exfoliated deciduous teeth, periodontal ligament, gingiva, dental pulp, alveolar bone, dental follicle, and apical papilla. Immunoregulatory properties of dental stem cells provide potential for both autologous and allogenic tissue-engineering approaches. In vitro and animal studies show promise for using dental stem cells in regenerative medicine. Eventually, the orchestration of clinical trials will require systematic monitoring of spontaneous in vitro transformations and complications associated with graft versus host response as well as a thorough understanding of underlying anabolic mechanisms.

Articles with similar content:

Embryonic and Induced Pluripotent Stem Cells as a Model for Liver Disease
Critical Reviews™ in Biomedical Engineering, Vol.37, 2009, issue 4-5
Alejandro Soto-Gutierrez, Masaki Nagaya, Hiroshi Yagi, Ira J. Fox, Edgar Tafaleng, Stephen C. Strom, Marc C. Hansel
Stem Cells: A New Paradigm in Medical Therapeutics
Journal of Long-Term Effects of Medical Implants, Vol.20, 2010, issue 3
Sadanand D. Mankikar
Characteristics and Tissue Regeneration Properties of Gingiva-Derived Mesenchymal Stem Cells
Critical Reviews™ in Eukaryotic Gene Expression, Vol.25, 2015, issue 2
Dehua Li, Zhengze Guo, Zhang Wu, Lei Qin, Ningbo Zhao
Scaffolds for Tissue Engineering of Cartilage
Critical Reviews™ in Eukaryotic Gene Expression, Vol.12, 2002, issue 3
J. M. Bezemer, C. A. van Blitterswijk, J. Riesle, T. B. F. Woodfield, J. S. Pieper
Neural Tissue Engineering for Neuroregeneration and Biohybridized Interface Microsystems In vivo (Part 2)
Critical Reviews™ in Biomedical Engineering, Vol.39, 2011, issue 3
D. Kacy Cullen, Douglas H. Smith, Bryan J. Pfister, John A. Wolf