Abonnement à la biblothèque: Guest
Critical Reviews™ in Biomedical Engineering

Publication de 6  numéros par an

ISSN Imprimer: 0278-940X

ISSN En ligne: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

A Review of Magnetically Actuated Milli/Micro-Scale Robots Locomotion and Features

Volume 47, Numéro 5, 2019, pp. 379-394
DOI: 10.1615/CritRevBiomedEng.2019030299
Get accessGet access

RÉSUMÉ

In the past decades, wireless milli and micro devices have been incorporated into medical procedures as a way to reduce invasiveness. However, the commercially available methods still consist of passive locomotion devices, which is a limiting factor to the development of minimally invasive devices. Magnetism simplifies the design of small-scale devices since it does not require on-board batteries or motors. This review presents locomotion techniques and features using magnetic actuation towards minimally invasive procedures. Requirements, advantages, and challenges are discussed.

RÉFÉRENCES
  1. Medtronic [homepage on the Internet]. [cited 2019 Jun 2]. Available from: https://www.medtronic.com/covidien/ enus/products/capsule-endoscopy/pillcam-sb-3-system. html#pillcam-sb-3-capsule. .

  2. Olympus [homepage on the Internet]. [cited 2019 Jun 2]. Available from: https://medical.olympusamerica.com/ procedure/capsule-endoscopy. .

  3. Proteus Digital Health [homepage on the Internet]. [cited 2019 Feb 16]. Available from: https://www. proteus.com/press-releases/otsuka-and-proteus-an-nounce-the-first-us-fda-approval-of-a-digital-medicine-system-abilify-mycite/. .

  4. Stereotaxis [homepage on the Internet]. [cited 2019 Feb 17]. Available from: www.stereotaxis.com/products. .

  5. Nelson BJ, Kaliakatsos IK, Abbott JJ. Microrobots for minimally invasive medicine. Annu Rev Biomed Eng. 2010; 12:55-85. .

  6. Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E. Biomedical applications of untethered mobile milli/microrobots. Proc IEEE. 2015;103(2):205-224. .

  7. Ceylan H, Giltinan J, Kozielski K, Sitti M. Mobile microrobots for bioengineering applications. Lab Chip. 2017;17:1705-1724. .

  8. Singh AV, Sitti M. Targeted drug delivery and imaging using mobile milli/microrobots: a promising future towards theranostic pharmaceutical design. Curr Pharm Des. 2016;22:1418-1428. .

  9. Palagi S, Fischer P. Bioinspired microrobots. Nature Rev. 2018;3:113-124. .

  10. Erkoc P, Yasa IC, Ceylan H, Yasa O, Alapan Y, Sitti M. Mobile microrobots for active therapeutic delivery. Adv Ther. 2018;2:1800064. .

  11. Fu Y, Liu H, Huang W, Wang S, Liang Z. Steerable catheters in minimally invasive vascular surgery. Int J Med Robot Computer Assist Surg. 2009;5:381-391. .

  12. Cahill RA, Lewin RP, Mortensen NJ, Jones H. The prin-ciples and practice of magnetic instrumentation for natural orifice transluminal endoscopic surgery and other limited access surgical operations. Proc Inst Mech Eng. 2010:224;C:1455-1461. .

  13. Ali A, Plettenburg DH, Breedveld P. Steerable catheters in cardiology: classifying steerability and assessing future challenges. IEEE Trans Biomed Eng. 2016;63(4):679-693. .

  14. Soylu E, Harling L, Ashrafian H, Rao C, Casula R, Athanasiou T. A systematic review of the safety and efficacy of distal coronary artery anastomotic devices. Eur J Cardiothor Surg. 2015;49:732-745. .

  15. St Pierre R, Vogtmann D, Bergbreiter S. Model-based in-sights on the design of a hexapod magnetic walker. In: Hsieh MA, Khatib O, Kumar V, editors. Experimental robotics. Switzerland: Springer; 2016. p. 715-727. .

  16. Hayt Jr WH, Buck JA. Engineering electromagnetics. 8th ed. New York: McGraw Hill; 2011. .

  17. Kwon JO, Yang JS, Lee SJ, Rhee K, Chung SK. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble. J Micromech Microeng. 2011;21:115023. .

  18. Lu H, Zhang M, Yang Y, Huang Q, Fukuda T, Wang Z, Shen Y. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nature Comm. 2018;9(3944). .

  19. Erin O, Giltinan J, Tsai L, Sitti M. Design and actuation of a magnetic millirobot under a constant unidirectional magnetic field. Proc IEEE Int Conf Robot Automation; 2017 May 29 - Jun 3; Singapore; 2017:3404-10. .

  20. Lucarini G, Ciuti G, Mura M, Rizzo R, Menciassi A. A new concept for magnetic capsule colonoscopy based on an electromagnetic system. Int J Adv Robot Syst. 2015;12(3). .

  21. Diller E, Joshua G, Metin S. Independent control of multiple magnetic microrobots in three dimensions. Int J Robot Res. 2013;32(5):614-631. .

  22. Giltinan J, Diller E, Mayda C, Sitti M. Three-dimensional robotic manipulation and transport of micro-scale objects by a magnetically driven capillary micro-Gripper. IEEE Int Conf Robot Automation. 2014:2077-2082. .

  23. Hilbich D, Rahbar A, Khosla A, Gray BL. Manipulation of permanent magnetic polymer micro-robots: a new approach towards guided wireless capsule endoscopy. Proc SPIE. 2012:85482I. .

  24. Abbott JJ, Peyer KE, Lagomarsino MC, Zhang L, Dong L, Kaliakatsos IK, Nelson BJ. How should microrobots swim? Int J Robot Res. 2009;28(11-12):1434-1447. .

  25. Zhang J, Diller E. Untethered miniature soft robots: modeling and design of a millimeter-scale swimming magnetic sheet. Soft Robot. 2018;5(6):761-776. .

  26. Iacovacci V, Lucarini G, Ricotti L, Dario P, Dupont PE, Menciassi, A. Untethered magnetic millirobot for targeted drug delivery. Biomed Microdevices. 2015;17(3):63. .

  27. Ha LV, Rodriguez HL, Lee C, Go G, Zhen J, Nguyen VD, Choi H, Ko SY, Park JO, Park S. A soft-magnet-based drug-delivery module for active locomotive intestinal capsule endoscopy using an electromagnetic actuation system. Sensors Actuators, A: Physical. 2016;243:81-89. .

  28. Sun ZJ, Ye B, Zhang HH, Liu S. Design and implementation of magnetically maneuverable capsule endoscope system with direction reference for image navigation. J Eng Med. 2014;228(7):652-664. .

  29. Lien GS, Liu CW, Jiang JA, Chuang CL, Teng MT. Magnetic control system targeted for capsule endoscopic operations in the stomach-design, fabrication, and in vitro and ex vivo evaluations. IEEE Trans Biomed Eng. 2012;59(7):2068-2079. .

  30. Carpi F, Kastelein N, Talcott M, Pappone C. Magnetically controllable gastrointestinal steering of video capsules. IEEE Trans Biomed Eng. 2011;58(2):231-234. .

  31. Gao M, Hu C, Chen Z, Zhang H, Liu S. Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope. IEEE Trans Biomed Eng. 201057(12):2891-2902. .

  32. Yim S, Gultepe E, Gracias DH, Sitti M. Biopsy using a magnetic capsule endoscope carrying, releasing and retrieving untethered. IEEE Trans Biomed Eng. 2014;61(2):513-521. .

  33. Yim S, Sitti M. Design and analysis of a magnetically actuated and compliant capsule endoscopic robot. IEEE Int Conf Robot Automation. 2011:4810-4815. .

  34. Yim S, Sitti M. Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans Robot. 2012;28(1):183-94. .

  35. Yim S, Sitti M. Shape-programmable soft capsule robots for semi-implantable drug delivery. IEEE Trans Robot. 2012;28(5):1198-1202. .

  36. Yim S, Goyal K, Sitti M. Magnetically actuated soft capsule with the multimodal drug release function. IEEE/ASME Trans Mechatron. 2013;18(4):1413-1418. .

  37. Son D, Dogan MD, Sitti M. Magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy. Int Conf Robot Automation. 2017:1132-1139. .

  38. Du Plessis d'Argentre A, Perry S, Iwata Y, Iwasaki H, Iwase E, Fabozzo A, Will I, Rus D, Damian DD, Miyashita S. Programmable medicine: autonomous, ingestible, de-ployable hydrogel patch and plug for stomach ulcer therapy. Int Conf Robot Automation. 2018:1511-1518. .

  39. Tung HW, Peyer KE, Sargent DF, Nelson BJ. Noncontact manipulation using a transversely magnetized rolling robot. Appl Physics Lett. 2013;103(114101). .

  40. Ye Z, Sitti M. Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. Lab on a Chip. 2014;14(13):2177-2182. .

  41. Ye Z, Edington C, Russell AJ, Sitti M. Versatile non-contact micro-manipulation method using rotational flows locally induced by magnetic microrobots. IntConf Adv Intell Mechatro. 2014:26-31. .

  42. Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. Research-article. ACS Nano. 2018;12:9617-25. .

  43. Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti, M. 3D-printed biodegradable microswimmer for drug delivery and targeted cell labeling. BioRxiv. 2018;379024. .

  44. Pawashe C, Floyd S, Sitti M. Dynamic modeling of stick slip motion in an untethered magnetic micro-robot. Proc Robot Sci Sys 4. 2008. .

  45. Pawashe C, Floyd S, Sitti M. Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robot Res. 2009;28(8):1077-94. .

  46. Floyd S, Pawashe C, Sitti M. An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. IEEE Int Conf Robot Autom, ICRA. 2008:419-24. .

  47. Floyd S, Pawashe C, Sitti M. Microparticle manipulation using multiple untethered magnetic micro-robots on an electrostatic surface. IEEE/RSJ Int Conf Intell Robots Sys. 2009:528-33. .

  48. Floyd S, Diller E, Pawashe C, Sitti M. Control methodologies for a heterogeneous group of untethered magnetic micro-robots. Int J Robot Res. 2011;30(13):1553-65. .

  49. Pawashe C, Floyd S, Sitti M. Multiple magnetic microrobot control using electrostatic anchoring. Appl Phys Lett. 2009;94(16):164108. .

  50. Diller E, Pawashe C, Floyd S, Sitti M. Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-d reconfigurable micro-systems. Int J Robot Res. 2011;30(14):1667-1680. .

  51. Diller E, Miyashita S, Sitti M. Magnetic hysteresis for multi-state addressable magnetic microrobotic control. IEEE Int Conf Intell Robots Syst. 2012:2325-2331. .

  52. Pawashe C, Floyd S, Diller E, Sitti M. Two-dimensional autonomous microparticle manipulation strategies for magnetic microrobots in fluidic environments. IEEE Trans Robot. 2012;28(2):467-77. .

  53. Li Z, Diller E. Polymer filament-based in situ microrobot fabrication using magnetic guidance. Int J Adv Robot Syst. 2017;14(1):1-13. .

  54. Dong X, Sitti M. Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper. Proc IEEE Int Conf Robot Autom. 2017:6612-18. .

  55. Diller E, Sitti M. Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv Func Mat. 2014;24:4397-4404. .

  56. Diller E, Zhuang J, Lum GZ, Edwards MR, Sitti M. Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl Phys Lett. 2014;104(174101). .

  57. Zhang J, Diller E. Millimeter-scale magnetic swimmers using elastomeric undulations. IEEE Int Conf Intell Robots Syst. 2015:1706-11. .

  58. Lum GZ, Ye Z, Dong X, Marvi H, Erin O, Hu W, Sitti M. Shape-programmable magnetic soft matter. ProcNat Acad Sc. 2016;113(41):6007-6015. .

  59. Hu W, Lum GZ, Mastrangeli M, Sitti M. Small-scale soft-bodied robot with multimodal locomotion. Nature. 2018;554:81-85. .

  60. Li H, Tan J, Zhang M. Dynamics modeling and analysis of a swimming microrobot for controlled drug delivery. IEEE Int Conf Robot Autom. 2006:1768-1773. .

  61. Xu T, Vong CI, Wang B, Liu L, Wu X, Zhang L. Rotating soft-tail millimeter-scaled swimmers with super-hydrophilic or superhydrophobic surfaces. IEEE RAS and EMBS Int Conf Biomed Robot Biomechatron. 2016:502-507. .

  62. Khalil ISM, Tabak, AF Hosney, A, Klingner A, Shalaby M, Abdel-Kader RM, Serry M, Sitti M. Targeting of cell mockups using sperm-shaped microrobots in vitro. Proc IEEE RAS/EMBS Int Conf Biomed Robot Biomechatron. 2016:495-501. .

  63. Carlsen RW, Edwards MR, Zhuang J, Pacoret C, Sitti M. Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip. 2014;14:3850-59. .

  64. Yasa O, Erkoc P, Alapan Y, Sitti M. Microalga-powered microswimmers toward active cargo delivery. Ad Mat. 2018;30(1804130). .

  65. Vogtmann D, St Pierre R, Bergbreiter S. A 25 mg magnetically actuated microrobot walking at > 5 body lengths/sec. Int Conf Micro Electro Mech Syst(MEMS). 2017:179-82. .

  66. St Pierre R, Bergbreiter S. Gait exploration of sub-2 g robots using magnetic actuation. IEEE Robot Automat Lett. 2017;2(1):34-40. .

  67. Ito T, Murakami S. Capsule micromechanism driven by impulse-wireless implementation. Microactuators Micromech. 2017;45:67-77. .

  68. Frutiger DR, Kratochvil BE, Vollmers K, Nelson BJ. Magmites-Wireless resonant magnetic microrobots. Proc IEEE Int Conf Robot Autom. 2008:1770-71. .

  69. Frutiger DR, Vollmers K, Kratochvil BE, Nelson BJ. Small, fast, and under control: wireless resonant magnetic micro-agents. Int J Robot Res. 2010;29(5):613-636. .

  70. Magmites [homepage on the Internet]. [cited 2019 Feb 1]. Available from: https://www.youtube.com/watch?v=Prl2J-0IdZE. .

  71. Chung SE, Dong X, Sitti M. Three-dimensional heteroge-neous assembly of coded microgels using an untethered mobile microgripper. Lab Chip. 2015;15:1667-1676. .

  72. Zhang J, Diller E. Tetherless mobile micrograsping using a magnetic elastic composite material. Smart MatStruct. 2016;25(11). .

  73. Zhang J, Onaizah, O, Middleton K, You L, Diller E. Reliable grasping of three-dimensional untethered mobile magnetic microgripper for autonomous pick-and-place. IEEE Robot Autom Lett. 2017;2(2):835-40. .

  74. Zhang J, Salehizadeh M, Diller E. Parallel pick and place using two independent untethered mobile magnetic microgrippers. 2018 IEEE Int Conf RobotAutom. 2018:123-128. .

  75. Li Z, Youssefi O, Diller E. Magnetically-guided in-situ microrobot fabrication. IEEE Int Conf Intell Robots Syst 2016:5131-5136. .

  76. Diller E, Ye Z, Sitti M. Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects. 2011 IEEE/RSJ Int Conf Intell Robots Systems. 2011:1291-1296. .

  77. Diller E, Ye Z, Giltinan J, Sitti M. Addressing of micro-robot teams and non-contact micro-manipulation. Small-Scale Robotics. Nano-to-Millimeter-Sized Robot Syst Appl. 2014:28-38. .

  78. Becker AT, Felfoul O, Dupont PE. Toward tissue penetration by MRI-powered millirobots using a self-assembled gauss gun. Proc IEEE Int Conf Robot Autom. 2015:1184-89. .

  79. Liu Y, Ravindra NM. A magnetic-field-assisted milli-scale robotic assembly machine: an approach to parallel robotic automation systems. Micromachines. 2018;9(144):1-13. .

  80. Diller E, Floyd S, Pawashe C, Sitti M. Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Trans Robot. 2012;28(1):172-182. .

  81. Salehizadeh M, Diller E. Optimization-based formation control of underactuated magnetic microrobots via interagent forces. Int Conf Manip Automat Robot Small Scales. 2017:1-5. .

  82. Salehizadeh M, Diller E. Two-agent formation control of magnetic microrobots in two dimensions. J Micro-Bio Robot. 2017;12(1-4):9-19. .

  83. Diller E, Miyashita S, Sitti M. Remotely addressable magnetic composite micropumps. RSC Adv. 2012;2:3850-3856. .

  84. Miyashita S, Diller E, Sitti M. Two-dimensional magnetic micro-module reconfigurations based on inter-modular interactions. Int J Robot Res. 2013;32(5):591-613. .

  85. Vartholomeos P, Akhavan-Sharif MR, Dupont PE. Motion planning for multiple millimeter-scale magnetic capsules in a fluid environment. Int Conf Robot Automat. 2012:1927-1932. .

  86. Leclerc J, Ramakrishnan A, Tsekos NV, Becker A. Magnetic hammer actuation for tissue penetration using a millirobot. IEEE Robot Automat Lett. 2018;3(1):403-410. .

  87. Glass P, Cheung E, Sitti M. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. IEEE Tran Biomed Eng. 2008;55(12):2759-2767. .

  88. Do TN, Ho KY, Phee SJ. A magnetic soft endoscopic capsule-inflated intragastric balloon for weight management. Sci Reports. 2016;6:39486. .

  89. Miyashita S, Guitron S, Yoshida K, Li S, Damian DD, Rus D. Ingestible, controllable, and degradable origami robot for patching stomach wounds. IEEE Int Conf Robot Automat. 2016:909-916. .

  90. Yim S, Sitti M. SoftCubes: stretchable and self-assembling three-dimensional soft modular matter. Int J Robot Res. 2014;33(8):1083-1097. .

  91. Yim S, Sitti M. SoftCubes: towards a soft modular matter. IEEE Int Conf Robot Automat. 2013:530-536. .

  92. Abbott JJ, Peyer KE, Lagomarsino MC, Zhang L, Dong L, Kaliakatsos IK, Nelson BJ. How should microrobots swim? Int J Robot Res. 2009;28(11-12):1434-1447. .

  93. Jing W, Cappelleri D. Towards functional mobile micro-robots. In: Paprotny I, Bergbreiter S, editors. Small-scale robotics. Berlin: Springer; 2013:81-100. .

  94. Turan M, Almalioglu Y, Gilbert H, Sari AE, Soylu U, Sitti M. Endo-VMFuseNet: deep visual-magnetic sensor fusion approach for uncalibrated, unsynchronized and asymmetric endoscopic capsule robot localization data mehmet. ArXiv e-prints. 2017. .

  95. Turan M, Almalioglu Y, Konukoglu E, Sitti M. A deep learning based 6 degree-of-freedom localization method for endoscopic capsule robots. ArXiv e-prints. 2017. .

  96. Turan M, Almalioglu Y, Araujo H, Konukoglu E, Sitti M. Deep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing. 2018;275:1861-1870. .

  97. Turan M, Pilavci YY, Ganiyusufoglu I, Araujo H, Konu-koglu E, Sitti M. Sparse-then-dense alignment-based 3D map reconstruction method for endoscopic capsule robots. Machine Vision Applic. 2018;29(2):345-359. .

  98. Son D, Yim S, Sitti M. A 5-D localization method for a magnetically manipulated untethered robot using a 2-D array of hall-effect sensors. IEEE/ASME Trans Mechatron. 2016;21(2):708-716. .

  99. Turan M, Almalioglu Y, Gilbert H, Araujo H, Cemgil T, Sitti M. EndoSensorFusion: particle filtering-based multi-sensory data fusion with switching state-space model for endoscopic capsule robots. ArXiv e-prints. 2017. .

  100. Yim S, Sitti M. 3-D localization method for a magnetically actuated soft capsule endoscope and its applications. IEEE Trans Robot. 2013;29(5):1139-1151. .

  101. Diller E, Giltinan J, Lum GZ, Ye Z, Sitti M. Six-degree-of-freedom magnetic actuation for wireless microrobotics. Int J Robot Res. 2016;35(1-3):114-128. .

  102. Munoz F, Alici G, Zhou H, Li W, Sitti M. Analysis of mag-netic interaction in remotely controlled magnetic devices and its application to a capsule robot for drug delivery. IEEE/ASME Trans Mechatron. 2018;23(1):298-310. .

  103. Eqtami A, Dupont PE. Stabilizing the relative position of millirobots inside an MRI scanner considering magnetic interaction forces. IEEE Int C Intell Robots Syst. 2015:3220-3226. .

CITÉ PAR
  1. Amici Cinzia, Pellegrini Nicola, Tiboni Monica, The Robot Selection Problem for Mini-Parallel Kinematic Machines: A Task-Driven Approach to the Selection Attributes Identification, Micromachines, 11, 8, 2020. Crossref

  2. Eshaghi Mehdi, Ghasemi Mohsen, Khorshidi Korosh, Design, manufacturing and applications of small-scale magnetic soft robots, Extreme Mechanics Letters, 44, 2021. Crossref

  3. de Oliveira Barros Amanda, Bhattacharya Sukalyan, Yang James, Mechanics of Magnetic Robots Akin to Soft Beams Supported at Unanchored Contacts, Journal of Applied Mechanics, 88, 12, 2021. Crossref

  4. Clark Kevin B., Smart Device-Driven Corticolimbic Plasticity in Cognitive-Emotional Restructuring of Space-Related Neuropsychiatric Disease and Injury, Life, 12, 2, 2022. Crossref

  5. Liu Dong, Wang Ting, Lu Yuan, Untethered Microrobots for Active Drug Delivery: From Rational Design to Clinical Settings, Advanced Healthcare Materials, 11, 3, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain