Abonnement à la biblothèque: Guest
Journal of Enhanced Heat Transfer

Publication de 8  numéros par an

ISSN Imprimer: 1065-5131

ISSN En ligne: 1563-5074

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00037 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.6 SJR: 0.433 SNIP: 0.593 CiteScore™:: 4.3 H-Index: 35

Indexed in

AN EXPERIMENTAL ANALYSIS OF HEAT TRANSFER CAPABILITY OF NANOFLUIDS IN SINGLE-PHASE TUBULAR FLOWS

Volume 21, Numéro 2-3, 2014, pp. 231-258
DOI: 10.1615/JEnhHeatTransf.2015012323
Get accessGet access

RÉSUMÉ

In the present paper the results of an experimental investigation on the advantages of using nanofluids for heat transfer operations have been reported. The nanofluid systems varied both in terms of type of particles and their concentration, and of base fluid, for a total of 23 different system configurations. The experimentally derived heat transfer coefficients for these systems, for single-phase forced convection inside tubes, have been compared with those of water or of the corresponding base fluid. The trends identified have been reported as a function of different operating parameters (Re number and fluid average velocity) and the analysis showed that the advantage often claimed for nanofluids actually occurs only under a limited number of hydrodynamic conditions and at the expense of a much higher pumping energy. At the same time, the most commonly adopted correlations for the prediction of the heat transfer coefficient of homogeneous mixtures have been applied to the investigated systems, to check whether it is possible to predict the heat transfer capability of a nanofluid with the ordinary equations by simply introducing the average physical properties of the mixture. It has been found that with the exception of Al2O3 suspensions, in most of the cases the heat transfer coefficient can be actually predicted with a rather good level of accuracy.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain