Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Enhanced Heat Transfer
Facteur d'impact: 1.406 Facteur d'impact sur 5 ans: 1.075 SJR: 0.287 SNIP: 0.653 CiteScore™: 1.2

ISSN Imprimer: 1065-5131
ISSN En ligne: 1563-5074

Volumes:
Volume 27, 2020 Volume 26, 2019 Volume 25, 2018 Volume 24, 2017 Volume 23, 2016 Volume 22, 2015 Volume 21, 2014 Volume 20, 2013 Volume 19, 2012 Volume 18, 2011 Volume 17, 2010 Volume 16, 2009 Volume 15, 2008 Volume 14, 2007 Volume 13, 2006 Volume 12, 2005 Volume 11, 2004 Volume 10, 2003 Volume 9, 2002 Volume 8, 2001 Volume 7, 2000 Volume 6, 1999 Volume 5, 1998 Volume 4, 1997 Volume 3, 1996 Volume 2, 1995 Volume 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.v16.i2.20
pages 103-122

Saturation Boiling of HFE-7100 Dielectric Liquid on Copper Surfaces with Corner Pins at Different Inclinations

Jack L. Parker
Chemical and Nuclear Engineering Department and Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, USA
Mohamed S. El-Genk
Institute for Space and Nuclear Power Studies; Mechanical Engineering Department; Nuclear Engineering Department, Chemical & Biological Engineering Dept., University of New Mexico, Albuquerque, New Mexico, 87131 USA

RÉSUMÉ

Results of experiments investigating saturation boiling of HFE-7100 dielectric liquid on 10 X 10 mm copper surfaces with 3× 3 mm corner pins, 2-, 3-, and 5-mm tall, are presented and discussed. Also investigated are the effects of surface roughness and inclination, from 0° (upward facing) to 180°, on the thermal power removed and the temperature of the footprint surface. Results are compared to those measured for a plane Cu surface of the same footprint area and surface roughness. New heat transfer results in natural convection and nucleate boiling and of Critical Heat Flux (CHF) at various orientations are obtained and a heat transfer correlation for natural convection is developed. The latter is important to the cooling of computer chips while in the standby mode of operation. In addition to reducing and/or eliminating the temperature excursion prior to boiling incipience, large enhancements in the heat removal rate are measured in both natural convection and nucleate boiling. In natural convection in the upward-facing orientation, the thermal power removed is ∼68% higher than from the plane Cu, at the same surface superheat, and independent of the surface roughness and the pin height. Consistent with the reported results by other investigators for macrostructured surfaces, the thermal power removed in nucleate boiling and at CHF increases as the wetted area by the boiling liquid increases, but the surface average heat fluxes decrease. Increasing the surface roughness increases the thermal power removed in nucleate boiling by 10−15%. For the surfaces with 2-, 3-, and 5-mm-tall pins at 0° inclination, the thermal powers removed at CHF of 40.5, 41.5, and 58.1 W represent increases of 79%, 83%, and 157%, compared to the plane Cu surface (22.6 W). CHF (46.5 W) for the surface with the 5-mm-tall pins at 180° inclination is as much as 83% of that at 0° (58.1 W), compared to only 20% for the plane Cu surface. The surface with the 5-mm tall corner pins also has the smallest boiling resistance, increasing from 0.43 K/W at 0° to 0.55 K/W at 180°, compared to 0.85 K/W and 2.8 K/W for plane Cu.


Articles with similar content:

SUBCOOLED BOILING OF DIELECTRIC LIQUIDS ON POROUS GRAPHITE AT DIFFERENT ORIENTATIONS
International Heat Transfer Conference 13, Vol.0, 2006, issue
Jack L. Parker, Mohamed S. El-Genk
SATURATION AND SUBCOOLED CHF CORRELATIONS FOR PF-5060 DIELECTRIC LIQUID ON INCLINED ROUGH COPPER SURFACES
Multiphase Science and Technology, Vol.26, 2014, issue 2
Arthur Suszko, Mohamed S. El-Genk
EXPERIMENTAL STUDY OF POOL BOILING ON PIN-FINNED AND STRAIGHT-FINNED SURFACES ON AN INCLINED PLATE IN FC-72
Journal of Enhanced Heat Transfer, Vol.18, 2011, issue 4
Liang-Han Chien, Shu-Che Lee
Heat Transfer and Pressure Drop Characteristics in Dielectric Flow in Surface-Augmented Microchannels
Journal of Enhanced Heat Transfer, Vol.16, 2009, issue 3
Naveenan Thiagarajan, Daniel T. Pate, Sushil Bhavnani, Rory J. Jones
Professor N. E. Zhukovsky and Industrial Aerodynamics
International Journal of Fluid Mechanics Research, Vol.26, 1999, issue 4
A. S. Ginevsky