Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Enhanced Heat Transfer
Facteur d'impact: 0.562 Facteur d'impact sur 5 ans: 0.605 SJR: 0.211 SNIP: 0.361 CiteScore™: 0.33

ISSN Imprimer: 1065-5131
ISSN En ligne: 1026-5511

Volumes:
Volume 26, 2019 Volume 25, 2018 Volume 24, 2017 Volume 23, 2016 Volume 22, 2015 Volume 21, 2014 Volume 20, 2013 Volume 19, 2012 Volume 18, 2011 Volume 17, 2010 Volume 16, 2009 Volume 15, 2008 Volume 14, 2007 Volume 13, 2006 Volume 12, 2005 Volume 11, 2004 Volume 10, 2003 Volume 9, 2002 Volume 8, 2001 Volume 7, 2000 Volume 6, 1999 Volume 5, 1998 Volume 4, 1997 Volume 3, 1996 Volume 2, 1995 Volume 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2011003350
pages 13-24

HEAT TRANSFER ENHANCEMENT IN MINI CHANNELS WITH MICRO/NANO PARTICLES DEPOSITED ON A HEAT-LOADED WALL

Leonard L. Vasiliev
Porous Media Laboratory Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus 15, Str. P.Brovka, 220072 Minsk, Belarus
Alexander S. Zhuravlyov
Luikov Heat & Mass Transfer Institute, National Academy of Sciences of Belarus, Porous Media Laboratory, P. Brovka Str. 15, 220072 Minsk, Belarus
Alexander Shapovalov
Porous Media Laboratory, A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus

RÉSUMÉ

As reported in the literature, many investigations have been performed to provide a better understanding of two-phase heat transfer at the microscale, which is very important in electronics and optoelectronic components cooling by micro heat exchangers. However, these studies have not yet led to a general conclusion. Recently in the Porous Media Laboratory (Minsk, Belarus) some experiments have been carried out in investigation of mini/microscale heat transfer of two-phase fluids (propane) at heat flux ranges 102−105 W/m2. Experimental investigation of pool boiling and evaporation heat transfer in mini channels on a single horizontal tube (smooth and with porous coating) has been performed for analysis of its cooling efficiency. The data obtained in the liquid pool and in confined space (from 0.1 to 2 mm) on a flooded and partially flooded horizontal tube with porous coating illustrate the phenomena of a micro heat pipe inside a porous structure. Propane, as the long-term alternative refrigerant, will be important in the future for compact heat exchangers, heat pipes, and heat pump applications due to its performance, its lack of impact on the environment (zero ODP and <3 GWP), and its physical properties, which are close to those of R-22. In the flat and annular mini channels with micro/nano coated walls investigated in this study, a microscale heat transfer effect took place inside the porous coating of the heat-loaded wall and a heat transfer miniscale effect occurred in the mini channel. The cylindrical heat-loaded tube with porous coating was disposed inside the transparent coaxial glass tube. Visual analysis and experimental data show that such a combination of plates or tubes provides evaporation and two-phase convection heat transfer enhancement. The availability of annular mini channels significantly promotes intense heat transfer (up to 2.5−3 times as high) at heat fluxes <50 kW/m2, as compared with processes in the liquid pool.


Articles with similar content:

MICROSCALE TWO PHASE HEAT TRANSFER ENHANCEMENT IN POROUS STRUCTURES
International Heat Transfer Conference 13, Vol.0, 2006, issue
Leonid L. Vasiliev, Jr., A. Zhuravlyov, L. L. Vasiliev, Jr, Alexander Shapovalov
Two-Phase Heat Transfer in a Mini-Channel with Porous Heat-Loaded Wall
Heat Transfer Research, Vol.39, 2008, issue 5
Leonid L. Vasiliev, Jr., A. Konon, Alexander Shapovalov, Alexander S. Zhuravlyov
Boiling Heat Transfer Enhancement of Double-Tube Heat Pipe for High Power Devices
International Heat Transfer Conference 15, Vol.22, 2014, issue
Masafumi Katsuta, Taro Kato, Kazuhiro Sugaya, Ryutaro Hotta
HORIZONTAL VAPORDYNAMIC THERMOSYPHONS, FUNDAMENTALS, AND PRACTICAL APPLICATIONS
Heat Pipe Science and Technology, An International Journal, Vol.4, 2013, issue 1-2
Leonid L. Vasiliev, Jr., Alexander S. Zhuravlyov, Leonard L. Vasiliev
HEAT TRANSFER ENHANCEMENT IN MINI CHANNELS WITH NANO PARTICLES DEPOSIT ON THE HEAT LOADED WALL
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Alexander Shapovalov, Leonard L. Vasiliev, Alexander S. Zhuravlyov