Abonnement à la biblothèque: Guest
Journal of Enhanced Heat Transfer

Publication de 8  numéros par an

ISSN Imprimer: 1065-5131

ISSN En ligne: 1563-5074

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00037 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.6 SJR: 0.433 SNIP: 0.593 CiteScore™:: 4.3 H-Index: 35

Indexed in

THERMAL CONDUCTIVITY ENHANCEMENT OF POLYMERS VIA STRUCTURE TAILORING

Volume 27, Numéro 5, 2020, pp. 463-489
DOI: 10.1615/JEnhHeatTransf.2020034592
Get accessGet access

RÉSUMÉ

Polymers are usually known for their low thermal conductivity. However, the demand in industries for polymers with high thermal conductivity has increasingly grown due to their low density, low cost, flexibility, and good environmental resistance compared with conventional substances of high thermal conductivity. Composites filled with high thermal conductivity nanofillers will increase thermal conductivity (k); however, it has been clearly observed that the mechanical properties will deteriorate along with this process. Instead, increasing the intrinsic thermal conductivity of polymers themselves is more important. This review focuses on the mechanism of increasing k from the perspectives of polymer intrinsic structure tailoring: crystallinity, orientation of the crystallites, crystalline grain size, and alignment of the molecular chain in the amorphous region. Structure tailoring methods of increasing/improving these four factors are critically reviewed and discussed. Accurate thermal characterization methods are critically reviewed for these structure-tailored polymers in low dimensions. The transient electro-thermal and pulsed laser-assisted thermal relaxation 2 techniques provide some of the best and most accurate thermal conductivity measurements with high physics control.

RÉFÉRENCES
  1. Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., Hyun, J.K., Johnson, A.T., and Fischer, J.E., Carbon Nanotube Composites for Thermal Management, Appl. Phys. Lett., vol. 80, no. 15, pp. 2767-2769, 2002.

  2. Cahill, D.G., Thermal-Conductivity Measurement by Time-Domain Thermoreflectance, MRS Bull, vol. 43, no. 10, pp. 782-789,2018.

  3. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., and Phillpot, S.R., Nanoscale Thermal Transport, J. Appl. Phys, vol. 93, no. 2, pp. 793-818,2003.

  4. Cahill, D.G., Goodson, K.E., and Majumdar, A., Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures, J. Heat Transf, vol. 124, no. 2, pp. 223-241,2002.

  5. Chen, H., Ginzburg, V.V., Yang, J., Yang, Y., Liu, W., Huang, Y., Du, L., and Chen, B., Thermal Con-ductivity of Polymer-Based Composites: Fundamentals and Applications, Prog;. Polym. Sci., vol. 59, pp. 41-85,2016a.

  6. Chen, W., Wang, Z., Zhi, C., and Zhang, W., High Thermal Conductivity and Temperature Probing of Cop-per Nanowire/Upconversion Nanoparticles/Epoxy Composite, Compos. Sci. Technol., vol. 130, pp. 63- 69,2016b.

  7. Chen, X., He, Y., Zhao, Y., and Wang, X., Thermophysical Properties of Hydrogenated Vanadium-Doped Magnesium Porous Nanostructures, Nanotechnology, vol. 21, no. 5, p. 055707,2010.

  8. Chen, X., Su, Y, Reay, D., and Riffat, S., Recent Research Developments in Polymer Heat Exchangers-A Review, Renewable Sustainable Energy Rev., vol. 60, pp. 1367-1386,2016c.

  9. Choi, T.Y., Poulikakos, D., Tharian, J., and Sennhauser, U., Measurement of the Thermal Conductivity of Individual Carbon Nanotubes by the Four-Point Three-Omega Method, Nano Lett., vol. 6, no. 8, pp. 1589-1593,2006.

  10. Choy, C.L., Thermal Conductivity of Polymers, Polymer, vol. 18, no. 10, pp. 984-1004,1977.

  11. Choy, C.L., Wong, Y.W., Yang, G.W., and Kanamoto, T., Elastic Modulus and Thermal Conductivity of Ultradrawn Polyethylene, J. Polym. Sci, PartB: Polym. Phys, vol. 37, pp. 3359-3367,1999.

  12. Choy, C.L., Yang, G.W., and Wong, Y.W., Thermal Diffusivity of Polymer Films by Pulsed Photothermal Radiometry, J. Polym. Sci, PartB: Polym. Phys, vol. 35, pp. 1621-1631,1997.

  13. Crown, E.M. and Batcheller, J.C., 9 - Technical Textiles for Personal Thermal Protection, in Handbook of Technical Textiles (SecondEdition), A.R. Horrocks and S.C. Anand, Eds., Cambridge, UK: Woodhead Publishing, pp. 271-285,2016.

  14. Danes, F., Garnier, B., and Dupuis, T., Predicting, Measuring, and Tailoring the Transverse Thermal Con-ductivity of Composites from Polymer Matrix and Metal Filler, Int. J. Thermophys, vol. 24, no. 3, pp. 771-784,2003.

  15. Deng, C . H. , Sun, Y.M., Pan, L . J. , Wang, T. Y. , Xie, Y. S . , Liu, J. , Zhu, B .W. , and Wang, X .W. , Thermal Diffusivity of a Single Carbon Nanocoil: Uncovering the Correlation with Temperature and Domain Size, ACS Nano, vol. 10, no. 10, pp. 9710-9719,2016.

  16. Diaz, R. and Guo, Z., Enhanced Conduction and Pool Boiling Heat Transfer on Single-Layer Graphene Coated Substrates, J. Enhanced Heat Transf., vol. 26, no. 2, pp. 127-143,2019.

  17. Dorenbos, G., Sommer, J.U., and Reiter, G., Polymer Crystallization on Pre-Patterned Substrates, J. Chem. Phys, vol. 118, no. 2, pp. 784-791,2002.

  18. Duan, X., Li, Z., Liu, J., Chen, G., and Li, X., Roles of Kink on the Thermal Transport in Single Polyethylene Chains, J. Appl. Phys, vol. 125, no. 16, p. 164303,2019.

  19. Engineering ToolBox, Plastics-Thermal Conductivity Coefficients [online], accessed April 19,2020, from https://www.engineeringtoolbox.com/thermal-conductivity-plastics-d_1786.html, 2011.

  20. Feng, X., Liu, G., Xu, S., Lin, H., and Wang, X., 3-Dimensional Anisotropic Thermal Transport in Microscale Poly(3-Hexythiophene) Thin Films, Polymer, vol. 54, pp. 1887-1895,2013.

  21. Feng, X. and Wang, X., Thermophysical Properties of Free-Standing Micrometer-Thick Poly (3- Hexylthiophene) Films, Thin Solid Films, vol. 519, no. 16, pp. 5700-5705,2011.

  22. Gao, J.W., Zheng, R.T., Ohtani, H., Zhu, D.S., and Chen, G., Experimental Investigation of Heat Conduction Mechanisms inNanofluids. Clue on Clustering, Nano Lett., vol. 9, no. 12, pp. 4128-4132,2009.

  23. Guo, J., Wang, X., Geohegan, D.B., Eres, G., and Vincent, C., Development of Pulsed Laser-Assisted Thermal Relaxation Technique for Thermal Characterization of Microscale Wires, J. Appl. Phys., vol. 103, no. 11, p. 113505,2008.

  24. Guo, J., Wang, X., and Wang, T., Thermal Characterization of Microscale Conductive and Nonconductive Wires Using Transient Electrothermal Technique, J. Appl. Phys, vol. 101, no. 6, p. 063537,2007a.

  25. Guo, J.Q., Wang, X.W., Zhang, L.J., and Wang, T., Transient Thermal Characterization of Mi- cro/Submicroscale Polyacrylonitrile Wires, Appl. Phys. A, vol. 89, no. 1, pp. 153-156,2007b.

  26. Guo, L., Wang, J., Lin, Z., Gacek, S., and Wang, X., Anisotropic Thermal Transport in Highly Ordered TiO2 Nanotube Arrays, J. Appl. Phys, vol. 106, no. 12, p. 123526,2009.

  27. Guo, Z., Heat Transfer Enhancement-A Brief Review of 2018 Literature, J. Enhanced Heat Transf, vol. 26, no. 5, pp. 429-449,2019.

  28. Han, M., Liu, J., Xie, Y., and Wang, X., Sub-pm c-Axis Structural Domain Size of Graphene Paper Uncovered by Low-Momentum Phonon Scattering, Carbon, vol. 126, pp. 532-543,2018.

  29. Han, Z. and Fina, A., Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review, Prog. Polym. Sci., vol. 36, no. 7, pp. 914-944,2011.

  30. Henry, A. and Chen, G., High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations, Phys. Rev. Lett., vol. 101, no. 23, p. 235502,2008.

  31. Huang, C., Qian, X., and Yang, R., Thermal Conductivity of Polymers and Polymer Nanocomposites, Mater. Sci. Eng., R, vol. 132, pp. 1-22,2018.

  32. Jones, R.R., Hooper, D.C., Zhang, L., Wolverson, D., and Valev, V.K., Raman Techniques: Fundamentals and Frontiers, Nanoscale Res. Lett., vol. 14, no. 1,p. 231,2019.

  33. Jordan, J., Jacob, K.I., Tannenbaum, R., Sharaf, M.A., and Jasiuk, I., Experimental Trends in Polymer Nanocomposites-A Review, Mater. Sci. Eng., A, vol. 393, nos. 1-2, pp. 1-11,2005.

  34. Kim, K., Kim, M., Hwang, Y., and Kim, J., Chemically Modified Boron Nitride-Epoxy Terminated Dimethylsiloxane Composite for Improving the Thermal Conductivity, Ceram. Int., vol. 40, no. 1, Part B, pp. 2047-2056,2014.

  35. Kohli, R., Chapter 3 - Methods for Monitoring and Measuring Cleanliness of Surfaces, in Developments in Surface Contamination and Cleaning, R. Kohli and K.L. Mittal, Eds., Oxford, UK: William Andrew Publishing, pp. 107-178,2012.

  36. Kurtz, S.M., Chapter 2 - Synthesis and Processing of PEEK for Surgical Implants, in PEEK Biomaterials Handbook (Second Edition), S.M. Kurtz, Ed., Norwich, NY: William Andrew Publishing, pp. 11-25, 2019.

  37. Kusunose, T., Yagi, T., Firoz, S.H., and Sekino, T., Fabrication of Epoxy/Silicon Nitride Nanowire Composites and Evaluation of Their Thermal Conductivity, J. Mater. Chem. A, vol. 1, no. 10, pp. 3440-3445, 2013.

  38. Li, B. and Wang, J., Anomalous Heat Conduction and Anomalous Diffusion in One-Dimensional Systems, Phys. Rev. Lett., vol. 91, no. 4, p. 044301,2003.

  39. Li, D.Y., Wu, Y.Y., Kim, P., Shi, L., Yang, P.D., and Majumdar, A., Thermal Conductivity of Individual SiliconNanowires, Appl. Phys. Lett., vol. 83, no. 14, pp. 2934-2936,2003.

  40. Li, H. and Yan, S., Surface-Induced Polymer Crystallization and the Resultant Structures and Morphologies, Macromolecules, vol. 44, no. 3, pp. 417-428,2011.

  41. Li, H. and Zhang, X., Directional Crystallization of Polymer Molecules through Solvent Annealing on a Patterned Substrate, Opt. Express, vol. 23, no. 7, pp. 8422-8429,2015.

  42. Lin, G., Xie, B., Hu, J., Huang, X., and Zhang, G., Aligned Graphene Oxide Nanofillers: An Approach to Prepare Highly Thermally Conductive and Electrically Insulative Transparent Polymer Composite, J. Nanomater., vol. 2015, pp. 1-6,2015.

  43. Lin, H., Xu, S., Wang, X., and Mei, N., Significantly Reduced Thermal Diffusivity of Free-Standing Two-Layer Graphene in Graphene Foam, Nanotechnology, vol. 24, no. 41, p. 415706,2013.

  44. Liu, G., Xu, S., Cao, T., Lin, H., Tang, X., Zhang, Y., and Wang, X., Thermally Induced Increase in Energy Transport Capacity of Silkworm Silks, Biopolymers, vol. 101, no. 10, pp. 1029-1037,2014.

  45. Liu, J., Qu, W., Xie, Y., Zhu, B., Wang, T., Bai, X., and Wang, X., Thermal Conductivity and Annealing Effect on Structure of Lignin-Based Microscale Carbon Fibers, Carbon, vol. 121, pp. 35-47,2017.

  46. Liu, J., Wang, T., Xu, S., Yuan, P., Xu, X., and Wang, X., Thermal Conductivity of Giant Mono- to Few-Layered CVD Graphene Supported on an Organic Substrate, Nanoscale, vol. 8, pp. 10298-10309,2016.

  47. Liu, J., Xu, Z., Cheng, Z., Xu, S., and Wang, X., Thermal Conductivity of Ultra-High Molecular Weight Polyethylene Crystal: Defect-Effect Uncovered by 0 K Limit Phonon Diffusion, ACSAppl. Mater. Interf., vol. 7, pp. 27279-27288,2015.

  48. Liu, J. and Yang, R., Length-Dependent Thermal Conductivity of Single Extended Polymer Chains, Phys. Rev. B, vol. 86, no. 10, p. 104307,2012.

  49. Liu, Y. and Chen, E., Polymer Crystallization of Ultrathin Films on Solid Substrates, Coord. Chem. Rev, vol. 254, no. 9, pp. 1011-1037,2010.

  50. Long, Y., Yan, X., Wang, X., Zhang, J., and Yu, M., Chapter 2 - Electrospinning: The Setup and Procedure, in Electrospinning: Nanofabrication and Applications, B. Ding, X. Wang, and J. Yu, Eds., Norwich, NY: William Andrew Publishing, pp. 21-52,2019.

  51. Lotz, B., Miyoshi, T., and Cheng, S.Z.D., 50th Anniversary Perspective: Polymer Crystals and Crystallization: Personal Journeys in a Challenging Research Field, Macromolecules, vol. 50, no. 16, pp. 5995-6025,2017.

  52. Luo, D., Huang, C., and Huang, Z., Decreased Thermal Conductivity of Polyethylene Chain Influenced by Short Chain Branching, J. Heat Transf., vol. 140, no. 3, p. 031302,2017.

  53. Luo, T., Esfarjani, K., Shiomi, J., Henry, A., and Chen, G., Molecular Dynamics Simulation of Thermal Energy Transport in Polydimethylsiloxane, J. Appl. Phys, vol. 109, no. 7, p. 074321,2011.

  54. Ma, H. and Tian, Z., Effects of Polymer Topology and Morphology on Thermal Transport: A Molecular Dynamics Study of Bottlebrush Polymers, Appl. Phys. Lett., vol. 110, no. 9, p. 091903,2017.

  55. Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., Mu, R., Bellan, L.M., and Li, D., Thermal Conductivity of ElectrospunPolyethyleneNanofibers, Nanoscale, vol. 7, no. 40, pp. 16899-16908,2015.

  56. Nitta, K.-H. and Nomura, H., Stress-Strain Behavior of Cold-Drawn Isotactic Polypropylene Subjected to Various Drawn Histories, Polymer, vol. 55, no. 25, pp. 6614-6622,2014.

  57. Oyake, T., Sakata, M., and Shiomi, J., Nanoscale Thermal Conductivity Spectroscopy by Using GoldNano-Islands Heat Absorbers, Appl. Phys. Lett., vol. 106, no. 7, p. 073102,2015.

  58. Parker, W.J., Jenkins, R.J., Abbott, G.L., and Butler, C.P., Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, J. Appl. Phys., vol. 32, no. 9, p. 1679,1961.

  59. Shen, S., Henry, A., Tong, J., Zheng, R., and Chen, G., Polyethylene Nanofibres with Very High Thermal Conductivities, Nat. Nanotechnol., vol. 5, no. 4, pp. 251-255,2010.

  60. Sim, L.C., Ramanan, S.R., Ismail, H., Seetharamu, K.N., and Goh, T. J., Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes, Thermochim. Acta, vol. 430, no. 1,pp. 155-165,2005.

  61. Song, S.H., Park, K.H., Kim, B.H., Choi, Y.W., Jun, G.H., Lee, D.J., Kong, B.-S., Paik, K.-W., and Jeon, S., Enhanced Thermal Conductivity of Epoxy-Graphene Composites by Using Non-Oxidized Graphene Flakes with Non-Covalent Functionalization, Adv. Mater., vol. 25, no. 5, pp. 732-737,2013.

  62. T'Joen, C., Park, Y., Wang, Q., Sommers, A., Han, X., and Jacobi, A., A Review on Polymer Heat Exchangers for HVAC&R Applications, Int. J. Refrig, vol. 32, no. 5, pp. 763-779,2009.

  63. Tu, R., Liao, Q., Zeng, L., Liu, Z., and Liu, W., Impact of Torsion and Stretching on the Thermal Conductivity of Polyethylene Strands, Appl. Phys. Lett., vol. 110, no. 10, p. 101905,2017.

  64. Wang, H., Keum, J.K., Hiltner, A., Baer, E., Freeman, B., Rozanski, A., and Galeski, A., Confined Crystallization of Polyethylene Oxide in Nanolayer Assemblies, Science, vol. 323, no. 5915, pp. 757-760, 2009.

  65. Wang, T., Wang, X., Zhang, Y., Liu, L., Xu, L., Liu, Y., Zhang, L., Luo, Z., and Cen, K., Effect of Zirconium (IV) Propoxide Concentration on the Thermophysical Properties of Hybrid Organic-Inorganic Films, J. Appl. Phys, vol. 104, no. 1,p. 013528,2008.

  66. Wang, X., Xu, X., and Choi, S.U.S., Thermal Conductivity of Nanoparticle-Fluid Mixture, J. Thermophys. Heat Transf., vol. 13, no. 4, pp. 474-480,1999.

  67. Wang, X.J., Ho, V., Segalman, R.A., and Cahill, D.G., Thermal Conductivity of High-Modulus Polymer Fibers, Macromolecules, vol. 46, no. 12, pp. 4937-4943,2013.

  68. Wang, Y., Jeong, H., Chowdhury, M., Arnold, C.B., and Priestley, R.D., Exploiting Physical Vapor Deposition for Morphological Control in Semi-Crystalline Polymer Films, Polym. Cryst., vol. 1, no. 4, p. e10021,2018.

  69. Winey, K.I., Kashiwagi, T., and Mu, M., Improving Electrical Conductivity and Thermal Properties of Polymers by the Addition of Carbon Nanotubes as Fillers, MRS Bull., vol. 32, no. 4, pp. 348-353,2007.

  70. Xiao, H.-M., Zhang, W.-D., Lv, C., Fu, S.-Y., Wan, M.-X., and Mai, Y.-W., Large Enhancement in Conductivity of Polyaniline Films by Cold Stretching, Macromol. Chem. Phys., vol. 211, no. 10, pp. 1109-1116, 2010.

  71. Xie, Y., Xu, Z., Xu, S., Cheng, Z., Hashemi, N., Deng, C., and Wang, X., Defect Level and Ideal Thermal Conductivity of Graphene Uncovered by Residual Thermal Reffusivity at 0 K Limit, Nanoscale, vol. 7, pp. 10101-10110,2015.

  72. Xie, Y., Xu, S., Xu, Z., Wu, H., Deng, C., and Wang, X., Interface-Mediated Extremely Low Thermal Conductivity of Graphene Aerogel, Carbon, vol. 98, pp. 381-390,2016.

  73. Xie, Y., Wang, T., Zhu, B., Yan, C., Zhang, P., Wang, X., and Eres, G., 19 - Fold Thermal Conductivity Increase of Carbon Nanotube Bundles toward High-End Thermal Design Applications, Carbon, vol. 139, pp. 445-458,2018a.

  74. Xie, Y., Zhu, B., Liu, J., Xu, Z., and Wang, X., Thermal Reffusivity: Uncovering Phonon Behavior, Structural Defects, and Domain Size, Front. Energy, vol. 12, pp. 143-157,2018b.

  75. Xu, S. and Wang, X., Across-Plane Thermal Characterization of Films based on Amplitude-Frequency Profile in Photothermal Technique, AIP Adv., vol. 4, no. 10, p. 107122,2014.

  76. Xu, Y., Kraemer, D., Song, B., Jiang, Z., Zhou, J., Loomis, J., Wang, J., Li, M., Ghasemi, H., Huang, X., Li, X., and Chen, G., Nanostructured Polymer Films with Metal-Like Thermal Conductivity, Nat. Commun., vol. 10, no. 1,p. 1771,2019.

  77. Xu, Y., Wang, X., Zhou, J., Song, B., Jiang, Z., Lee, E.M.Y., Huberman, S., Gleason, K.K., and Chen, G., Molecular Engineered Conjugated Polymer with High Thermal Conductivity, Sci. Adv., vol. 4, no. 3, p. eaar3031, 2018.

  78. Xu, Z., Wang, X., and Xie, H., Promoted Electron Transport and Sustained Phonon Transport by DNA Down to 10 K, Polymer, vol. 555, pp. 6373-6380,2014a.

  79. Xu, Z., Xu, S., Tang, X., and Wang, X., Energy Transport in Crystalline DNA Composites, AIP Adv., vol. 4, no. 1,p. 017131,2014b.

  80. Yu, J., Choi, H.K., Kim, H.S., and Kim, S.Y., Synergistic Effect of Hybrid Graphene Nanoplatelet and Multi-Walled Carbon Nanotube Fillers on the Thermal Conductivity of Polymer Composites and Theoretical Modeling of the Synergistic Effect, Composites, Part A, vol. 88, pp. 79-85,2016.

  81. Yuan, H., Zhou, Q., and Zhang, Y., 6 - Improving Fiber Alignment during Electrospinning, in Electrospun NanoBbers, M. Afshari, Ed., Cambridge, UK: Woodhead Publishing, pp. 125-147,2017.

  82. Zhang, J., Huang, X., Yue, Y., Wang, J., and Wang, X., Dynamic Response of Graphene to Thermal Impulse, Phys. Rev. B, vol. 84, p. 235416,2011.

  83. Zhang, T., Wu, X., and Luo, T., Polymer Nanofibers with Outstanding Thermal Conductivity and Thermal Stability: Fundamental Linkage between Molecular Characteristics and Macroscopic Thermal Properties, J.Phys. Chem. C, vol. 118,no. 36, pp. 21148-21159,2014.

  84. Zhang, Y., Zhang,X., Yang, L., Zhang, Q., Fitzgerald, M.L., Ueda, A., Chen, Y., Mu, R., Li, D., andBellan, L.M., Thermal Transport in Electrospun Vinyl Polymer Nanofibers: Effects of Molecular Weight and Side Groups, Soft Matter, vol. 14, no. 47, pp. 9534-9541,2018.

  85. Zhong, Z., Wang, X., and Xu, J., Equilibrium Molecular Dynamics Study of Phonon Thermal Transport in Nanomaterials, Numer. Heat Transf., PartB, vol. 46, no. 5, pp. 429-446,2004.

  86. Zhou, W., Wang, C., Ai, T., Wu, K., Zhao, F., and Gu, H., A Novel Fiber-Reinforced Polyethylene Composite with Added Silicon Nitride Particles for Enhanced Thermal Conductivity, Composites, Part A, vol. 40, no. 6, pp. 830-836,2009a.

  87. Zhou, W., Yu, D., Min, C., Fu, Y., and Guo, X., Thermal, Dielectric, and Mechanical Properties of SiC Particles Filled Linear Low-Density Polyethylene Composites, J. Appl. Polym. Sci., vol. 112, no. 3, pp. 1695-1703,2009b.

  88. Zhu, B., Liu, J., Wang, T., Han, M., Valloppilly, S., Xu, S., and Wang, X., Novel Polyethylene Fibers of Very High Thermal Conductivity Enabled by Amorphous Restructuring, ACS Omega, vol. 2, no. 7, pp. 3931-3944,2017.

  89. Zweben, C., Ultrahigh-Thermal-Conductivity Packaging Materials, in Proc. of 21st Annual IEEE Symposium on Semiconductor Thermal Measurement and Management, San Jose, CA, pp. 168-174,2005.

CITÉ PAR
  1. Weerasekera Naveen, Ajjarapu Kameswara Pavan Kumar, Sudan Kavish, Sumanasekera Gamini, Kate Kunal, Bhatia Bikram, Barocaloric Properties of Thermoplastic Elastomers, Frontiers in Energy Research, 10, 2022. Crossref

  2. Mital Dhruve, Liaqat Shehzad, Nancarrow Paul, Ibrahim Taleb, Jabbar Nabil Abdel, Khamis Mustafa, Thermal Conductivities of NTf2-Based Ionic Liquids: Experimental Measurement and Prediction via Group Contribution Methods, Journal of Chemical & Engineering Data, 67, 9, 2022. Crossref

Prochains articles

Flow Boiling Heat Transfer in Microchannel Heat Exchangers with Micro Porous Coating Surface Kuan-Fu Sung, I-Chuan Chang, Chien-Yuh Yang Enhancement Evaluation Criteria for Pool Boiling Enhancement Structures in Electronics Cooling: CHF Enhancement Ratio (ER-CHF) and Enhancement Index (EI) Maharshi Shukla, Satish Kandlikar Influence of transient heat pulse on heat transfer performance of vapor chamber with different filling ratios Zhou Wang, Li Jia, Hongling Lu, Yutong Shen, Liaofei Yin Effect of Geometrical Parameters on the Thermal-Hydraulic Performance of Internal Helically Ribbed Tubes Wentao Ji, Yi Du, Guo-Hui Ou, Pu-Hang Jin, Chuang-Yao Zhao, Ding-Cai Zhang, Wen-Quan Tao Condensation heat transfer in smooth and three-dimensional dimpled tubes of various materials Wei Li In Memoriam of Professor Ralph L. Webb on the anniversary of his 90th birthday Wei Li Analysis of the Single-Blow Transient Testing Technique for Non-metallic Heat Exchangers Wentao Li, Kun Sun, Guoyan ZHOU, Xing Luo, Shan-Tung Tu, Stephan Kabelac, Ke Wang Evaluation of Heat Transfer Rate of Double-Layered Heat Sink Cooling System with High Energy Dissipation El Bachir Lahmer, Jaouad Benhamou, Youssef Admi, Mohammed Amine Moussaoui, Ahmed Mezrhab, Rakesh Kumar Phanden Experimental Investigation on Behavior of a Diesel Engine with Energy, Exergy, and Sustainability Analysis Using Titanium Oxide (Tio2) Blended Diesel and Biodiesel AMAN SINGH RAJPOOT, TUSHAR CHOUDHARY, ANOOP SHUKLA, H. CHELLADURAI, UPENDRA RAJAK, ABHINAV ANAND SINHA COLLISION MORPHOLOGIES OF SUPERCOOLED WATER DROPLETS ON SMALL LOW-TEMPERATURE SUPERHYDROPHOBIC SPHERICAL TARGETS Xin Liu, Yiqing Guo, Jingchun Min, Xuan ZHANG, Xiaomin Wu Pool boiling heat transfer characteristics of porous nickel microstructure surfaces Kun-Man Yao, Mou Xu, Shuo Yang, Xi-Zhe Huang, Dong-chuan MO, Shu-Shen Lyu Field experimental investigation of the insulation deterioration characteristics of overhead pipeline for steam heating network Junguang Lin, Jianfa Zhao, Xiaotian Wang, Kailun Chen, Liang Zhang A parametric and comparative study on bare-tube banks and new-cam-shaped tube banks for waste heat recovery applications Ngoctan Tran, Jane-Sunn Liaw, Chi-Chuan Wang
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain