Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Enhanced Heat Transfer
Facteur d'impact: 1.406 Facteur d'impact sur 5 ans: 1.075 SJR: 0.287 SNIP: 0.653 CiteScore™: 1.2

ISSN Imprimer: 1065-5131
ISSN En ligne: 1563-5074

Volumes:
Volume 27, 2020 Volume 26, 2019 Volume 25, 2018 Volume 24, 2017 Volume 23, 2016 Volume 22, 2015 Volume 21, 2014 Volume 20, 2013 Volume 19, 2012 Volume 18, 2011 Volume 17, 2010 Volume 16, 2009 Volume 15, 2008 Volume 14, 2007 Volume 13, 2006 Volume 12, 2005 Volume 11, 2004 Volume 10, 2003 Volume 9, 2002 Volume 8, 2001 Volume 7, 2000 Volume 6, 1999 Volume 5, 1998 Volume 4, 1997 Volume 3, 1996 Volume 2, 1995 Volume 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.v16.i4.30
pages 351-366

Numerical Fluid Flow and Heat Transfer Prediction of Rotating Tapered Channel

Mehaboob Basha
Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, KFUPM Box 1207, Dhahran 31261, Saudi Arabia
Luai M. Al-Hadhrami
Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, KFUPM Box 1207, Dhahran 31261, Saudi Arabia

RÉSUMÉ

Computational fluid mechanics and heat transfer prediction are applied to study the three-dimensional turbulent flow and heat transfer in a rotating smooth tapered channel. Two channel orientations (90° and 135° from the rotation direction), three rotation numbers, Ro = 0, 0.14, and 0.28, and three inlet coolant-to-wall density ratios, 0.12, 0.20, and 0.40, are investigated for one Reynolds number value, 10,000. The local normalized Nusselt number values are reported for four walls: leading, trailing, top, and bottom walls. The results show considerable spanwise local Nusselt number variation across the leading and trailing walls as the rotation number increases. This causes flow reversal at the leading wall. For the top and bottom walls, Nusselt number variation is affected by the rotation angle. As the rotation angle changes from 90° to 135° the flow impinging the bottom wall results in higher Nusselt numbers compared to the top wall. The effect of varying channel cross section and hydraulic diameter (increasing by 19%) on the spanwise-averaged Nusselt number is unappreciable, when compared with experimental Nusselt number values for a rectangular channel.


Articles with similar content:

HEAT TRANSFER ENHANCEMENT OF INTERNAL PASSAGE USING DIMPLE/PROTRUSION
International Heat Transfer Conference 13, Vol.0, 2006, issue
S. D. Hwang, Hyung-Hee Cho
HEAT TRANSFER IN RECTANGULAR CHANNELS (AR=4:1) WITH NORMAL TRIPS AT HIGH ROTATION NUMBERS
International Heat Transfer Conference 13, Vol.0, 2006, issue
Sumanta Acharya, F. Zhou
LOCAL HEAT TRANSFER AUGMENTATION IN CHANNELS WITH TWO OPPOSITE RIBBED SURFACES
International Heat Transfer Conference 8, Vol.6, 1986, issue
J. S. Park, Je-Chin Han
NUMERICAL STUDY ON FLOW AND HEAT TRANSFER IN A RECTANGULAR CHANNEL WITH 45 DEG RIB TURBULATORS AND BLEED HOLES
Journal of Enhanced Heat Transfer, Vol.19, 2012, issue 5
Ya Jun Song, Zhong Yang Shen, Yong Hui Xie, Di Zhang
PREDICTION OF FLOW AND HEAT TRANSFER INSIDE A TWO-PASS ROTATING CHANNEL WITH ANGLED RIBBED SURFACES
Journal of Enhanced Heat Transfer, Vol.23, 2016, issue 2
Aminallah Miloud, Berrabah Brahim