Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Journal of Enhanced Heat Transfer
Facteur d'impact: 0.562 Facteur d'impact sur 5 ans: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN Imprimer: 1065-5131
ISSN En ligne: 1026-5511

Volumes:
Volume 27, 2020 Volume 26, 2019 Volume 25, 2018 Volume 24, 2017 Volume 23, 2016 Volume 22, 2015 Volume 21, 2014 Volume 20, 2013 Volume 19, 2012 Volume 18, 2011 Volume 17, 2010 Volume 16, 2009 Volume 15, 2008 Volume 14, 2007 Volume 13, 2006 Volume 12, 2005 Volume 11, 2004 Volume 10, 2003 Volume 9, 2002 Volume 8, 2001 Volume 7, 2000 Volume 6, 1999 Volume 5, 1998 Volume 4, 1997 Volume 3, 1996 Volume 2, 1995 Volume 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2013008185
pages 195-212

A NUMERICAL INVESTIGATION OF FLOW STRUCTURE AND HEAT TRANSFER ENHANCEMENT IN SQUARE RIBBED CHANNELS WITH DIFFERENTLY POSITIONED DEFLECTORS

Gongnan Xie
Department of Mechanical and Power Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
Shaofei Zheng
Institute of Thermal Engineering, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 7, 09599 Freiberg,Germany
Bengt Sunden
Division of Heat Transfer, Department of Energy Sciences, Lund University, P.O. Box 118, SE-22100, Lund, Sweden
Weihong Zhang
Laboratory of Engineering Simualtion and Aerospace Computing (ESAC), Northwestern Polytechnical University, P.O.Box 552, 710072, Xi'an, Shaanxi, China

RÉSUMÉ

Square cross-section ribbed channels with deflectors are computationally simulated to determine their optimal configuration for enhancing heat transfer with minimized pressure drop penalties. In this study, the channel inlet Reynolds number ranges from 8,000 to 24,000. The influence of deflector arrangement on the overall performance characteristics of ribbed channels is investigated with six different cases; i.e., one case of an array of seven continuous ribs mounted on one wall with a pitch ratio of P/e = 10 and the other five cases with deflectors installed on side walls that are designed to determine the most optimal performance. The details of turbulent flow structure, temperature fields, local heat transfer, pressure drop, normalized heat transfer, and normalized friction factor are obtained using the v2f turbulence model, and the thermal boundary conditions are appropriately set on all surfaces. The conjugate heat transfer methodology is also used to simulate the ribbed channels with deflectors. The overall performances of the six tested ribbed channels are evaluated and compared. Numerical results show that the usage of deflectors can modify or improve the local flow structure and thereby the local heat transfer. The heat transfer and friction characteristics are affected by the deflector location. Compared with the ribbed channel without deflectors, the reasonable configurations of the ribbed channel with deflectors yield better heat transfer. In all cases, Case D, in which the deflectors are positioned above and close to the ribs and the distance from the bottom wall is 20 mm, presents the most prominent effect on the heat transfer enhancement and thermal enhancement factor.