Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Uncertainty Quantification
Facteur d'impact: 0.967 Facteur d'impact sur 5 ans: 1.301 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimer: 2152-5080
ISSN En ligne: 2152-5099

Ouvrir l'accès

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2012003594
pages 371-395

FRAMEWORK FOR CONVERGENCE AND VALIDATION OF STOCHASTIC UNCERTAINTY QUANTIFICATION AND RELATIONSHIP TO DETERMINISTIC VERIFICATION AND VALIDATION

S. Maysam Mousaviraad
IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, USA
Wei He
Visiting scholar from NAOCE, Shanghai Jiao Tong University, Shanghai, China
Matteo Diez
Visiting scholar from CNR-INSEAN, Via di Vallerano 139, 00128 Rome, Italy
Frederick Stern
IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa 52242, USA

RÉSUMÉ

A framework is described for convergence and validation of nonintrusive uncertainty quantification (UQ) methods; the relationship between deterministic verification and validation (V&V) and stochastic UQ is studied, and an example is provided for a unit problem. Convergence procedures are developed for Monte Carlo (MC) without and with metamodels, showing that in addition to the usual user-defined acceptable confidence intervals, convergence studies with systematic refinement ratio are required. A UQ validation procedure is developed using the benchmark UQ results and defining the comparison error and its uncertainty to evaluate validation. A stochastic influence factor is defined to evaluate the effects of input variability on the performance expectation and four possibilities are identified in making design decisions. The unit problem studies a two-dimensional airfoil with variable Re and normal distribution using high-fidelity Reynolds-averaged Navier-Stokes (RANS) simulations. Deterministic V&V studies achieve monotonic grid convergence and validation at the validation uncertainty interval of 2.2% D, averaged between lift and drag, with an average error of 0.25% D. For MC with Latin hypercube sampling the converged results are obtained with 400 computational fluid dynamics (CFD) simulations and are used as validation benchmark in the absence of experimental UQ. The stochastic influence factor is small such that the output expected value is not distinguishable from the deterministic solution. The output uncertainty is one order of magnitude smaller for lift than drag, implying that lift is only weakly dependent on Re. Several metamodels are used with MC, reducing the number of CFD simulations to a minimum of 4. The results are converged and validated at the average intervals of 0.1% for expected value (EV) and 10.7% for standard deviation (SD). The Gauss quadrature and the polynomial chaos (PC) method are validated using 8 and 7 CFD simulations, respectively, at the average intervals of 0.08% for EV and 7.5% for SD. The error values are smallest for the metamodels, followed by the PC method and then the Gauss quadratures.


Articles with similar content:

BAYESIAN APPROACH TO THE STATISTICAL INVERSE PROBLEM OF SCATTEROMETRY: COMPARISON OF THREE SURROGATE MODELS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 6
Markus Bar, Sebastian Heidenreich, Hermann Gross

Attainability of Optimal Solutions of Linear Problem of Multicriteria Optimization with Alternative Criteria in Transitive Subordination
Journal of Automation and Information Sciences, Vol.43, 2011, issue 8
Andrey Yu. Brila

FREE CONVECTIVE FLOWS IN LARGE HEATED OIL STORAGE TANKS
International Heat Transfer Conference 7, Vol.3, 1982, issue
R. Pickles, A.C. Mendes de Sousa, James E. S. Venart, M. LaPlante

Numerical Assessment and Optimization of Wind Farm on Complex Terrain
International Heat Transfer Conference 15, Vol.43, 2014, issue
Mengxuan Song, ZhongYang He, BingHeng Wu, Xing Zhang, Kai Chen

DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 2
Michael S. Eldred, Howard C. Elman