Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Uncertainty Quantification
Facteur d'impact: 3.259 Facteur d'impact sur 5 ans: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimer: 2152-5080
ISSN En ligne: 2152-5099

Ouvrir l'accès

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2013006809
pages 205-223

IMPROVEMENTS TO GRADIENT-ENHANCED KRIGING USING A BAYESIAN INTERPRETATION

Jouke H.S. de Baar
TU Delft, Kluyverweg 1 (10.18), 2629 HS Delft, The Netherlands
Richard P. Dwight
Aerodynamics Group, Faculty of Aerospace, TU Delft, P.O. Box 5058, 2600GB Delft, The Netherlands
Hester Bijl
TU Delft, Kluyverweg 1 (10.18), 2629 HS Delft, The Netherlands

RÉSUMÉ

Cokriging is a flexible tool for constructing surrogate models on the outputs of computer models. It can readily incorporate gradient information, in which form it is named gradient-enhanced Kriging (GEK), and promises accurate surrogate models in >10 dimensions with a moderate number of sample locations for sufficiently smooth responses. However, GEK suffers from several problems: poor robustness and ill-conditionedness of the surface. Furthermore it is unclear how to account for errors in gradients, which are typically larger than errors in values. In this work we derive GEK using Bayes' Theorem, which gives an useful interpretation of the method, allowing construction of a gradient-error contribution. The Bayesian interpretation suggests the "observation error" as a proxy for errors in the output of the computer model. From this point we derive analytic estimates of robustness of the method, which can easily be used to compute upper bounds on the correlation range and lower bounds on the observation error. We thus see that by including the observation error, treatment of errors and robustness go hand in hand. The resulting GEK method is applied to uncertainty quantification for two test problems.


Articles with similar content:

A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 1
Ajay Jasra, Yan Zhou, Kengo Kamatani, Kody J. H. Law
A GRADIENT-ENHANCED SPARSE GRID ALGORITHM FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 5
Brendan Harding, Jouke H. S. de Baar
ROBUST UNCERTAINTY QUANTIFICATION USING RESPONSE SURFACE APPROXIMATIONS OF DISCONTINUOUS FUNCTIONS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 5
John N. Shadid, Timothy Wildey, A. Belme, A. A. Gorodetsky
RECONSTRUCTION OF DOMAIN BOUNDARY AND CONDUCTIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY USING THE APPROXIMATION ERROR APPROACH
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 3
Ville Kolehmainen, Jari P. Kaipio, Antti Nissinen
OPTIMIZATION-BASED SAMPLING IN ENSEMBLE KALMAN FILTERING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 4
Alexander Bibov, Heikki Haario, Antti Solonen, Johnathan M. Bardsley