Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Uncertainty Quantification
Facteur d'impact: 4.911 Facteur d'impact sur 5 ans: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Imprimer: 2152-5080
ISSN En ligne: 2152-5099

Ouvrir l'accès

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.v1.i2.10
pages 99-117

FAST METHOD FOR HIGH-FREQUENCY ACOUSTIC SCATTERING FROM RANDOM SCATTERERS

Paul Tsuji
ICES, University of Texas at Austin, Austin, TX 78712
Dongbin Xiu
Ohio Eminent Scholar Department of Mathematics The Ohio State University Columbus, Ohio 43210, USA
Lexing Ying
Department of Mathematics and ICES, University of Texas at Austin, TX 78712

RÉSUMÉ

This paper is concerned with the uncertainty quantification of high-frequency acoustic scattering from objects with random shape in two-dimensional space. Several new methods are introduced to efficiently estimate the mean and variance of the random radar cross section in all directions. In the physical domain, the scattering problem is solved using the boundary integral formulation and Nyström discretization; recently developed fast algorithms are adapted to accelerate the computation of the integral operator and the evaluation of the radar cross section. In the random domain, it is discovered that due to the highly oscillatory nature of the solution, the stochastic collocation method based on sparse grids does not perform well. For this particular problem, satisfactory results are obtained by using quasi-Monte Carlo methods. Numerical results are given for several test cases to illustrate the properties of the proposed approach.


Articles with similar content:

COMBINED BISPECTRUM-FILTERING SIGNAL PROCESSING TECHNIQUE
Telecommunications and Radio Engineering, Vol.72, 2013, issue 7
A. V. Totsky
ROBUST UNCERTAINTY QUANTIFICATION USING PRECONDITIONED LEAST-SQUARES POLYNOMIAL APPROXIMATIONS WITH l1-REGULARIZATION
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 1
D. Lucor, A. Belme, Jan Van Langenhove
NONLINEAR EIGENFUNCTION EXPANSIONS FOR THE SOLUTION OF NONLINEAR DIFFUSION PROBLEMS
First Thermal and Fluids Engineering Summer Conference, Vol.7, 2015, issue
Diego C. Knupp, Carolina Palma Naveira-Cotta, Renato M. Cotta
BAYESIAN APPROACH TO THE STATISTICAL INVERSE PROBLEM OF SCATTEROMETRY: COMPARISON OF THREE SURROGATE MODELS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 6
Markus Bar, Sebastian Heidenreich, Hermann Gross
AN ENSEMBLE KALMAN FILTER USING THE CONJUGATE GRADIENT SAMPLER
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Heikki Haario, Antti Solonen, Albert Parker, Marylesa Howard, Johnathan M. Bardsley